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- THEORY OF THE ANALYSIS OF NONLINEAR SYSTEMS

Martin 8, Brilliant

This report is based on a thesia submitted to the Department of
Electrical Engineering, M.I.T., January '3, 1958, in partial ful.
fillraent o’ the requirements for the degree of Doctor i wience,

Abstract

A theory of ihe analysis of nonlinear systems is developed. The central probiem is
the mathematical reoresentation of the dependence of the value of the output of such
systems on the present and past of the input, It {s shown that these systems can be con-
didered a8 generalized functi -s, and that many mathamatical methods used for the
representation of functions of a real variable, particularly tables of values, polynomials,
and expansions in seriec of orthogonal ‘unctions, can be uded in generalized form for
nonlinear systcms,

The discusgion is resiricted to time.invariant sysiems with bounded inputs., A d=fi.
nition of s continuous system is given, and it is shown that any continuous system can bhe
approxifuately represented, with the error as small as may be required, by the methods
mentioned above. mroughly describt~d, a continuous system s one that {s relatively
insensitive to small changes in the inpul, to rapid fluctuations (high frequcncies) in the
tnput, and 13 the remote past of the input,

A system is called an analylic sysiem if it can be exactly represented by a certain
formula that i1 a power-series generalization of the convolution integrai. This formula
can represent r.ol unly conuinuous sysicemeé but also no-memory nonlinear systems.
Methods are derived for calculating, 1n analytic form, the results of inversion, addidon,
multiplication, casc ade combination, and simple feedback connection of analviic ayatems,
The resultung series is proved to be convergent urder certain conditions, and bounds are
derived for the radius of convergence, the output, and the error incurred by using only
the first few terms. Methods are suggested for the experimental determination of ana-
iyuc represgentations for given systems.
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1. INTRODUCTION

1.1 NONLINEAR SYSTEMS

Al the present time the mowst useful methods for mathematical analysis and demign of
electirical systems are based on the theory of linear nyu‘tems‘ The techniques of analysis
and design of linear aystems have heen well developed, and they are used not only for
perfeclly linexr systems but also for almolt lineur systems.

Muny Lotamunication and contrul devices are not aearly linear., Sameumes nonline
carity ig essential to the operation of a device, sometimes it is undesirable but unavoid.
able, and suineuines & nonliaear component, although it is not esssntial, may five better
resulis than any iinear componenrt that might be used 1 its place. dumetimes nonlincar.
1y iw avoided, not because it would have an undesired effect in practaice, but simpiy
because Lvs effect cannot be computed. There has therefure been an incressing effort (o
develop methos- ~f analysis and design for nonlinear devices,

It is appropriate W note hcre the relation between linear and nonlinear systems. A
nonlinear system can be #'moct linesr, tut there is no such thuing as a linear system that
is almost nonlinear. Th. iinear case is a limiting case o) nonlinearily, and it is an
especially simple, not u especially difficult, limiting case.

We should expect, ther=fore, that any theory or technique that is adequate for general
nonlinear sygtems mus: Lec equully afequate {or linear systems. The word *norlinear® i3
appropriate only tu srecial technique -a gereral theory, spplicable to both lainear snd non.
linear systems, shedd not be called *nonlirear,” but *general.® However, the designation
Tnonlinear® will = used in this report to indicate the breadth of the theory, with the
understanaing tha’ it is not to be interpreted literally as excluding the special linear case.

1.2 HISTORICAL BACKGROUND

M 4on 2 effort to develop techniques of nonlinear system an\lysis has been prima.
rily ascocinted with a number of Huseian schools. in *his connection Poincaré, although
he was not 2 Russian, must be mentioned, as well as Liapounoff, Andronov and Caaikin,
Krylott and Bogoliuboff. A great deal of this work was summarized by Minorsky (1) and
published in 1947, This earlia: rirearch was directed principally taward the soluiion of
nonlinear differential equations and the invea:gation of the properiiss ot their solutions.
Fruitful as this work was, its scope is limited, i.d 14 has played no part in the author'a
research,

The author's research is based on the represasiation of nonlinear aystems by
expressing the output directly in terms of the input, The roots of Cus approach might
be hig*nrically '»scd to Volterra (Z), who included a theory of analxtic functionals in his
*Lecons 7 jes ‘tiong de lignes® in 1913, In 1923, "Viener (3} beought the theory of
Browy s s motion to bear on 111 p nWem of defiring an integral over a space of funciions,
v.nd §iv.luded a discussion of the average of 31 anslyuc functional. In 1942, Wiener
brouht Brownian motion and analytic functionals together again (4). The later paper
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contains the first use, in the representation of nonlinear systems, of the formula that
forme the basis of Section IV of this report, and, in “sct, it seema to be the firet attempt
at a geweral formula for the representation of nor  -car systems. Some other work along
the same lines was done more recenty “y lkehar« (5) in 1931, and by Deutsch {6) in 1958,

In recent years Wiener developed a general representation method for nonlhinear eys.
tems that is based on the properties of Brownian motion, but does not employ the {ormuls
that he uzed 1n 1942. This theory differs {rom the 1942 report in that it attacks the gen.
eral nonlinear problem rather Uian the specific probiem of noise in a particular class of
systems, The method has been presonted in unpublished lectures and described, although
not in its most recent form, by Bociun (7) and by Bose (8, V). Theoretical spproaches
related to this method have been ¢ veloped hy Singleton (10} and by Bose (9). The repre.
sentation formula developed by Zadeh (11) {# si;ailar in its basic orientation.

1.3 SYSTEMS AND FUNCTIONS

One of the central problems ir the aralycis of nonlinear systems is the linding of a
god repregentation formula. such . forinula inust be able to reprecent, either exacly
or w!ta arbitrarily s.uai; ¢rror, a large class of systems; and it must also be convenient
for use in .« clouwla.ara.. *nvolv,  3vetems,

There 18, however, u reprasentation problem in a more fundamenial sense, It is
recesmary to . Jie aea of a nonluiear system to more fundamental concepts, This

"lee an abntr ct repregentatiun, ' huse generslity is not limited by any concession
t.  mputational convenience. W:in auch a representation at hand, representation for-
mulas designed for computational needs can be mnore easily apprehended,

This abstract repreacntation is found in the general concept of a function. A function,
abstractly defined, is a relation between two sets of objects, called the domain and the

*ange of the function, which assigne to every object in the domain a corresponding object '

in tne rany.. with every object in the range assigned tc at least one object in the domain,
It may Le sald that a functios is any relation of the form "plug in x, out comes y3; the
et of A!  : thu( can t.e plupged in is the domain, and the get of all y that can come out
i8 the range,

This definjtion impliea no restriction on the nature of the objects x and y. We may
have, for example, an amplifier chasais with an empty tube gocket: every tube that can
be ingerted in the socket will give us a different amplifier. Therefore, we have a funce.
tion; the domain of this function is the set of all tubea that can be inserted in the socket,
and the range i the set of i’ vmplificrs that can thus be ubtained.

We are most famiiar with functions whose domain and range are sets of real nume.
bers. Such funclons are called "real-valued functions of a real varighle®; for conven.
ience, we shall call them "real functions.® In general, any furction whose range la a
set of real numbers is called a “real-valued function.? A real] [unclion is usually repre.
sented by 2 letter, such as [, The equation y = {{x) means that y is the element of the
range which [ ussigns to the element x of the domain, Note that f(x) is not & function,
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but 3 value of the function {; that 18, an element of the raage.

A nonlinear a)stem with one inout and one outpJd: a8 a function acces:v.g *° s deh.
nition. Foar every fnput in the set of inputs that the sysiem is devigned to artupt, the
system produces a corresponding output, These inputs and outputs car. "erwseives be
reprecented by functions. If we assume thut the uvuu-unl oulpuls are fiecirw aagnals,
they can be described by real functiors: To every real number { \here - assagned a
corresponduig real number {{1) that representys the vaive of the input or © - <* 2t ume L,
A nonlinear system can therefore be represented ) a funcuon whose du:ian and range
are sets of real Jonctions, Although such a function 8 conventionally called az %operator®
or a *tran.fcrmation,® {t will be referred to in this report as a "hyperiinctom® 1o empha.
size the fa. i that it is a function. A hyperfuncuoa (or the system it repr-senis) will be
denoted by a capital ucript‘ letter; the equation g = H{f) states that g 1s the real function
that represenis the output of the sysiem H when e wnput is the signal represeated by the
real function {,

Most of the discussion in the following sections deals specilically with u=e-nvariant
systems. Such aystems can be represented by a kusd of function that is siumgier than &
hyperfuncticn — a function whose domain is a set of real functions and whase razge is a
set of real numbers, Such functions are convenyonally called *functionals.*

The argument will be simpler if we consider anly phymically realizable systeras, that
1%, gystems in which the value of the cutput at any ure docs not depend on tatare valuee
of the input. If the systein H is physically realizable and time.invariant, thes the ouvtput
at a particular time t can be determined without knowing either the value of t or the
time at whick each value of the input occurred; it is suflicient to specily, for ewery won.
negative number v, what the value of the input was + seconds ago. This input data can
be expressed by the real fuaction u, u(r) s f(t—1) for v 30, where [ represems the input
in the us.al form. To each function u there correspoads a uniyue real number h{u), wih
the property that the value of the sutput of the sys’em 1 h(u) whenever the past of the
mnput is represented 5y u. The function h is a ‘incuanal according to the delmition given,
Fer a specufied input {, the function u will bz different for different t and will be desig-
nated as u, if t is to be gpecified; as t changes, u changes, and the value of the oatput
changes with it. If the system H is not physically resiizable, but is still isee-imvariant,
the only change that is necessary in this argument as to define u(r) for all v, -megative as
well as positive,

For the most part, we shall consider systeins for bounded inpu.s only. A real func.
tion f, representing an input, will be called bounded{R) if |{{t}] € R for all t. The set
of all real functions u, u(r) defined for v > 0, that are bounded(R), will be called PBI(R).

(PBI stands for Past of Bounded lnput.) All these real functions will be assumed to be -

*Editor's r-te; With the permiz~ion of the author, the script letls s omginally used
li.e., X, A, X, etc.) have beea replaced with the corresponding typad letter and 1den-
tuhed by an underline,
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! Lebesgue measurable; in practice this is no restriction, sincs some tricky mathematival
work is required to prove the existence of functions that are not Lebesgue measursble,
! i Such “*improper functiona® ns impulses or infinite-bandwidth white noise are not really
! ‘unctions, and thua their measurability is questionable, but they are excluded {rom com-
sideration as posaible inputs an the ground that they are not bounded.

We shall always consider two real functions f and g to be equivalent {f

f° {ttx) = gix)] dx = 0 (1)

for all real numbere a and b, since twe such functions are indistinguishable by any

physical measurement process,
1.4 REPRESENTATION OF FUNCTIONS

The central problem of computationally convenient representation can now br treated
with some perspective, We have 10 {ind convenient representations for certain kinds of
functions, namely, functionals and hyperfunctions.

Suitable metaods can be derived by generalizing the faruliar methods used for the
representation of rcal functions. These include: (a) miscellaneous designations for
q special functions, e.g., aigebraic, irigonometric; (b) implicit functions; 1.; akice of

values; (d) polynonaals, including power series; and (¢) expansions in serie> -:f orthog-

) : onal functions. The last three are methods of approximate representation, »r represen-
tasion as & limit of successive approximations. All the methods mentioned L 2ection 1,2
are particular forms of generalizations of these methods.

Several cla3ses of specially designated systems, that is, method (a) of the preceditg
paragraph, are already well known., Perhaps the most important is the class of linear
systems, whose special representation by meune of the convolution integral has been
found particularly convenient, No-memory oystems (the value of whose output at any
time depends only on the value of the {nput at that time), difierential operators {(not dif.
ferential equations, but such direct ytatements as *the output is the derivative of the
input®), and integral operators [unong which are the integral operators of Zadeh (1 l)]

: are also specially repreaented.

p An implicit functior method (t), is an equation that does not give f{x) directly in

terms of x, but specifies a condition jointly on x and {{x) so that for any x therc is a

valuz for {(x) thuy will sausfy the condition. A differentiil equation is exactly this sort

of condition: given any input f, it is necessary to go through a proceas called *golving
the differential equatiion® in order to obtain the output g. The methods des .sed by the

Russian wchools {or ubtaining such solutions are all special methods, restricied to cer-

tain kinds of equations and certain kinds of inputs, just as tne methods of solution for

implicit 1eal functions are all special methods.
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do et reqaure sprcial forms for the represenia’aoes of e functions, althosgh they do

requure tas! sote condiions te satiafiss, For the methods th  wil] Le d.acusard, &

suffi:rent conditaon fof arvitranly close appromimation 1s that the functsce Bt ia to be

repremuwsd be contiowous and kave 3 conpact doussz. The wmerpretanion of these con-

ditions for eyswems will be dascusacd 1a Section 1. The methods etseives il now

be orelly orscribed, . -

A anie of values {c}) 18 ccrreived of here as being wped o the si1Rplest possable mat..
aer, W@t s, without interpoiataon, in the cocstrocucn of the tadle 3 fiaite set of X, s
stlected from the dumain, and for each selected 5, ure corTespoading !l:‘) s tabulated,

In the ose of the 1able, for any grven x mn«nnnmudnluulﬂ-mmmtcor-

responding fUx ) 38 tazen As 33 approxuTation 1o fx). Owing to the way in shuch the table

is used, ita construction cas be wodified, First, sicce each tabulated x 15 actaally used

o repredent a set of neighbonag x's, the entry 1o toe table may be a designplom for Uus

set instead of a parucular X; 13 the set. Sacond, funce each tatalated fix s used to

approximate a set of {ix), whe tanxiatzed value nees oot be a particdiar ﬂz‘) but may be

simply 3 vailse that 1s repreder.auve ' thus set of {{3}). Either of these schemes can be

trantlated ino a method for the aporoxumate represenation of lunclionals by replacing

x by 3 axd [ vy h. The modified scheme is then a general descrplion of Siagleton's

methed for approxumatng nonlinear sy st 1s by finite. state transducers {(10). Bose's -
method «J representation (9) also employs the device of a finite tadle of values. Another D
method inwolniry tables of values is given in Section IG. )

Ao abstract definition of a polysomial (d) v ill be grver. ia Section 1V, as well as the e
parucular torm of polynomual representation that was also used by Wicner (4),
tkehara {5). and Deutsch {6). For our presenr purpose, it ‘3 sufficient to mote that the
sum of a constant, a linear sysiem, and products of Linear systems {odtamed by using
the same wmput for all systems and muluplyving =~ adding the outputs) is a polynomial
system. The formulz used it Sectioe 1V is so..ew at more general than this, and bas
been found 10 be coavenient for the compulations thal are required in 6xstems analysis,

Exransices m orthogonai functions (¢) wiil be discussed ic Section V. These methods
give promise ~{ tiing converuert {7r the ceasurement of norlinear sy stes A the lano.
ratory, aad their advantages can be combuned with the computational convemence of poly-
nomials by using expansions in orthogoual polynomuals. The generalization of these ]
ruethods {um real fanctions to Sys'ems is quite interesting, As we knos {rom the theory
of real Iiactons, Cipaision of a funciica in orthogonal [anctons involves s;Ategration over
the domain of the function, (LiegTaLot over a »el Of real rumbers 18 a {amaliar process,
but how can we integrate over 3 s€t of functions? Defamition of such integrals was the
essential prociem that Wiener (3) attacked 1n 1923, and at tast ame it was a Lilficult
prublem. Now, bowever. probadulity theory offers 3 solr:01: on a stalisucal ensemble
of funchrons, which is just a se” of fuasctions with probadiln:es deflined on 1t, an ensemble
averafe icxpeclatons) 1 eQquivaien® 10 an integral. Tras 1s the estential rrason for the
introductaon of procabiaty 1n e ethuds of BoGwn (7) and Bowe (8), as well as in the
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method of Wiener described by Booton and Bose; these canbe ! . .p-

of expanding a nonlinear system in & aeries o. orthogonal syste =,

The {ollowing sectsons diycuse some example: > approxim-.
cations, and some sufficient condiions {or their applicability ot
ditions of approximabili'y, and the next three sections are dev,. .o
methods of approximation,
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1I1. APPROXIMATIONS TO NONLINEAR SYSTEMS -

2.1 TOPOLOGY AND APPROXIMATIONS

: The pramary aim of this section s to establish some suflicient conditions for the
approximadu.,, of a nonlinear system by the mmethods i3 will be described 1n subsequent
. sections. The )most important resalts of Yus section are sutumarized an sectica 2.7,
. The theoreins that will be developed are easenually theorems of analysis; in fact, one
: theorem of analysis, t'.. Stone-Werersirass theorem, will be quoted and used wiout
: proof. Mostof @ malk=matical sxccas can be fourmd, 10 the reatricted context of real
. functions, in Rugin's *Princinles o Matrenatizal Analysis® (1)); the Stone-Weieratrass
: theore.n that he proved is applicable w -~ - purncse. For a discussion of wnuiysis in s
more general seiting, especially for a general defiition of a topalogical space, and for a
more appropriate definition of a coIngact set than is gaven in Kudin, refere~e o ~be
made to Hille's "Functionil Analysis a:d Semi-Groups® (13). R
One way in which a topol~gy may de rigorously defined is is terms of neightuioods,
A topological wpace {5 a eet of objevis x n which certawn sube:-ts N{a) are des gas'«d as ;
. ueigiiburhoods of specific objects x. [Usually, there as an . _.it; : (bjects u »-dl, for
: each x, an infinity of N(x).] These =+ ghbortuuds sausly cerwin conditi 4 that ~.asti- :
tute the postulates of topology: firs', every x has at ieast oue N{a), and ever: Nix) con- ‘
tains x; second, il NA(z) and NB(xI are twn neighborhoods of the same object x, there
38 an N.(x) w1 2 the property that azy okject i N.(x) is aiso in both N (x) and Kgta'; ;
third, for any L} :ct y contuined an ax_ neig.vorhood S‘(l) there is an NB(_\-) with the {
property that any object in NB(J) 18 aiso ia NA(I). {Conventionally, the odbjew.. in & topo- : \
logical space ure called *points.® T:is te-m will not be used in this report because it \
suggests a very restricted interpretation af topology.)
It willi now be shown that topalogs as juat defined 18 3 mathematical anald gue of the
engineering idea of approximation. Practically, approxucations occur when we ~nrvider
some object (e.g., & number, a posiion in space, a resistor, a signal, a system) tnat
is 10 be used for aome purpose, and want 1o know what other objects are sufficiently
similar to it to be used for the same parpose. We thus deline a criterion of approxima-
ton to this object, and consider *h+ se: of all objocts that, dy this criterion, are good
approxirations to 11, It will be shoe= that these approximation sets, as ne:gnborhoods,
satiify the poatulaten of topology 1aat have been given,
Firet, every Wject condidered by engunsers 13 usalle for some purpose, uwd thus at
" leust one neighborhood is defined for it; and for any purpoce an ovject is always a good
approximation to itself, Second, il am ovject x can be used for two purposes A and i, '
two neighberhoods NA“' and Nam thus being defined, we consider purpcse C as the
requirement of being sufficiently samzlar to x to sausfy both purpoxes A wnd B: tus
defines a neighborhood Nc(x) with the property that every ooject in Nch) 18 aiso in both
NA(x) and NB(l). Third, given x and some NA‘"' and any y in NA'"‘ we cam consider
purpoée I' for y as that of subsursung for z in the fuilillment of purposs A, snd can
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define N {y) an the set of all objects that are sufficiently similar to y to serve this pur-
pORL; then every object an NB(y) is alsa in NA(x).

These arguinents may seem trivial and pointiess; actually they establish the relation
between topology and appre -imations and make the topolog:cal toundations cf analysis,
and al) the theorems that (sllow from them, applicable to enginesring.

For auy s«t of otjects, different clasges of approxiumation critcria can often be used,
with the result that different sets of neighhorhoods and different topalogies are cbtained,
However, diffcrent acts of neighborhoods do not always lead to different topologies. Two
1etla of neighborhoods arc said to be bases of the same topology If every neighborhood in

ach set containe av least one neighoorhood from the other set. This is becsuse the
closed sets, open sels, compact sels, and continuous functions (dJefined in section 2.2)
are the same for both scvts of neighborhoods.

On a spac” of real numbers, a neighborhood of a number x is defined by the prop.
ety that y is in N((x) if the magnitude of the d.flerence between x and y is less than ¢.
In the uniform topobogy on a epace of real functions, g is in N‘(f) i, for every real
number t, the magnitude of the difference between f(t) and g(t) is lces than ¢; a similar
condition defines the uniform topology on a space of functionals, On a space of hyper-
functions (or, equivaiently, systems), we define the uniform topology by the statement
that X is in N (1) i, fur every input {, at every time t, tue magnitude ~f the difference
of the values of K(f) and H(f) is \ sa than €; or, equivalenlQy, K(0) is in N‘(u(f)) for
every {. A different topology on a space of rcal functions will be defined in section 2.4,

2.2 SOME TOPOLOGICAL CONCEPTS

A number of topological ideas that are to be uaed in the discussion of approximations
to nonlincar systems will now be defined. We begin by defining open and closed sets, in
spite of the fact that we shall make no use of them, not only hecause mathematical tradi.
tion seemn to demand it, but also because many writera define topoiogy in terms of open
scts, rether than in terms of neighborhoods.

An open set is a et with the property that every object in the set has at least one
neighborhood that is contained in the set, A closed set ia a set whose complesaent — the
wet of all objects in the space that are not in the set — is open, An equivalent definition
is that a closed set i3 n eet that contains all ite limit points. When a topological space
in defincd in termse of open sets, neighborhoods are usually defined by calling evesy open
set a neighborhood of every nbject that it contains,

A linut point of a set A is an object {which may or may not be in A) every neighbor-
hood »f which contains at least one object in A other than x. In other words, a liiait
point of A is an object that can be approximated arbitrariy closely (i.e., under any
criterion of approximation) by objects, other than itself, in A,

The closure of & set is the aet of all objects that are either in the set or are limit
points of the sct (or both). In other words, the closure of a set A is the aet of all otjects
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‘that can be nproximated arbitrarily closely by objecta in A. In the applicativn of this
«concept we allwll consider the closure of the set of all uysiems that can be exactly repre.
#ented by sorme method; the closure will e the set of ull aystems that can be represented
tby this methmt, either exactly ot with arbitrarily small error,

A compmct set js defined as follows. A collection of neighborhoods is said to cover a-
et A if evary object in A is in st least one of the neighborhoods in this collection, A
et 18 calledt cumpact if every collection of neighborhoods that covers it includes a {inite
:subsollectunyn that alse covers the set. If we define a criterion of spproximation for every
‘object 1n the wet A, by choosing a neighborhood for every object in A, Uus collection of
meighborhowtin -covers A; and if A is compact we can select a finite set uf objects in A
‘with the promert:' that every object in A is in the chosen neighborhood of at least one of
‘the selectad).obyects, The wraportance of this property can be indicated by interpreiing
mesghborhowtic an 2 slightly different way; that is, by coneidering a neighborhood of an
‘object am « = of objects that x can approximute, instead of _ set of objects that can
apeonamate w, (These interpretations are equivalent if the approximauon criterion has
‘- property dhnt x approximates y whenever y approximates x.) Ther a compact set
is one u__f, iwr any preédetermined criterion of approximation, can be approximuted by a
finite subsest of ilgelf,

Topology 18 combined with the abetract idea of a function in the definition of a con-
‘inuous {fumuiion, Suppose the range and domain of a function { are both topclogicel -
Rpaces; [ v #arwd to be continuous if for every x in the domain, ard for any neighborhood ’
'NA(((x)) Wl ithe corresponding [(x), there is a neighborhood NB(x) with the property that . '
‘whenevear w s in NB(x), f(y) ie in NA(f(xn. {Note that NA and NB are neighborhoods in ;
-dufferent syuaces,) This is a precise statcment of the imprecise idea that a continuous !
function im une whose value does not change abruptly; it impliea that any approximation
‘eriterion. un tthe range can be satisfic | by an appropriate criterion of approximation in the
-domain,,

2.3 TWD THEOREMS OF APFROXIMATION

in twrms :uf the concepts previously delined, two impor-ant theorems on approximae.
uon of funuitiuns can be stated, These theorems will bs applied 10 nonlinear systems in
section &, 4.

Tha firmki 18 & theorem on representation by tables of values, Let f be a continuous
function wutth & compact domain. Let a neighborhood NA(y) be chosen for every y in the
range. THi=n there is a finate ret of ubjects x, in the domaln, and for each 7, 8 neighbor-
hood Nyt )], such that every x in the dumain is in at least one Nyix ), and, whenever x
18 10 Nyl )l {(x}) is in N, tix D),

To 4applly thas theorem, we cons:der functions whoge ranges sre sets of real numboerse
or real fumctions, such as functionals or hyperfunctions, We choose 3 positive real
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number ¢ as the tolerance fur a crilerion of approximuation, and define neighborhoods

wn the range, a8 in section 2.1, Suppose som-. topology is also defined in the domain,
and that with these two topologies the function { is continuous, Then we can select a
finite set of objects x, and neighborhoods Mx‘). as indicated in the theorem; we construct
a table of these x, and the - rrrespording ﬂx‘). Then, for any x in the domain, we can
find in the table an X wi-  he property that x is in r:llx‘), and the tabulated ((x‘) will
difter (rom f{x) by lesr aan €.

The proo’ of this thevrem s Qquite simple. ‘cho the function is continuous,
there is a neighbo-hocd NB(x) for every x with the property that, if x' {s in
NB(x), f(x') is in NA(((x)). The collection of all thest neighborhoods Nn(x) covers
the domain, and, since the domain is ct:npact, there is a finite set of X with the
property that the collection of Nplx) alsa> covers the domain, This set of x
fulfills the cunditions stated in the theorem, and the theorem i3 thus proved. Inci.
dentally, we have also proved that if a function is continuous and its dormain is
compact then its range is also compact.

The second theoiem to be stated here 18 the Stone.Weierstrass theoren:; in «:lec?, it
in a theniem o:: the approximation of funciions by polvnucuule. It 16 rostric.e. .5 real.
valucd nrtumes  ithoud.. th. nature of the domain §8 not ™ ~tewrred, Ll sx sii- .. ' the
fis ot thez cmn that we assum. L .. *he fu..o + to be approximaied 18 continuous with
compact domain. The statement of this theorem n.ust oe preceded by zome preliminary
dcfinitions.

i1, {I. and tz are functions with the same domain and A 18 @ real number, then
fe 'l + (z il f{x) = f.(l) + lez) for every x in tke domsin, { s flfz iff{x) = fl(x)rz(x) for
every x in the domain, and { = Afl i f(x) = At!(x) for every x in the domain, These
definiuons, although obvious, are logicaily nontrivial,

An algebra of functions is a set of functions, all of which have the same domain, with
the property that for every f and g in the set and (or ¢very real number A, the functions
f+g, g, and Af ace also in the set,

An algebrs of functions is said to separate points if, for every pair of objects x and
y in thelr domain and »very pair of real numbers A and B, there is a function { in the
algebra with the prope.ty nat {(x) = A and {(y) = B.

The Stone-Weterstrass theorem states that if an algebrs of real-valued continuous
functions has 4 compact Jomain and separatés points, then the closure of the algebra, in
the uniforn, topology, is the set of all continuous real-valued functions with that domain;
f.e., for any continuous real.valued function f with that domain, and any positive num.
ber ¢, there is a function g in the algebra such that |f(x) - g(x)] < ¢ for every x in the
domain,

The proof o! this theorem has been given by Rudin (12); it is too involved to be
repeated here. Although the context of Rudin's proof may suggest that the theorem con-
cerns only functions of a real variable, the same proof is valid for compact domains in
the most general topological spaces,
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2.4 A SPECIAL TOPOLOGICAL SPACE
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The approxi:ation theorems of section 2.3 will now be ¥9plied to ncvlinear systems,
Specifically, since it was shown in Section | that 8 time-invariant system can be repre-
sented by a functional, they will be applied to functionals,

The theorems wndicate that a sufficient condition for a function to be approximabie ts
that it be continuous and have a compact domain. These propernies depend upon the topol.
ogies on the dumain and the range, Oun the range (which is a set of real numbers) there
is only one useful torology; but on the domain {which is a eet of real functions} a farrly
wide choice of topologies is possible. The practical .neaning of the theorems depends
upon the topology that is used on the domain; but if the theorema are (o have any practical
meaning at all, the ropology that 18 used muat imoly both a phyeically meaningful definie
tion of continulty and the exislence of physically significant compact sets, .

A topology that meets these requirements has been found, (Further research might
reveal others,) On the space PBI{R), which was defined in Section 1 as the scl of all real
functions u for which Ju(t}] € R for all ¢ in the domain 0 € v < @, neighLorhoods NT.&‘"’
are defined as follows: v 15 in N ((u), T> 0, 8> 0, f and only if _ 3

. oo
U; futr) - v(v)_] de] < 8 {2) : r

for all x in the interval 0 € x € T. The topology defined by these neighburhoois will be
called the RTI (Recent Time Integral) topology.
This condition may be alternatively expressed by defining the functions U and V,

- ——
3

Ulx) -fx u(r)dr, Vix}a fx v(r) dv ) r

- 0 0 4
: Then v {a {n N.r b("' if and only if the magnitude of the dilference b. ~en U{x) and V(x) 3
is less than § for every x in the interval 0 € x €« T. Note thatif v {sn N 6(\n then :

u isin N ls(v), and vice versa, It will be seen that for + tu be in h,r (u) no condition ’

nced be imposed on the values of these functions for v > T, although for v € T the differ- <

&

er~e between u(r) and v(r) need not remain small, but may slternate rapidly between
large pouitive and negative values.
It will be shown in the next section that the space PBIR), for any R, is compact in
the RT1 topology. We werefore consider 4 functional § whose domain is the space
F3I(R). This functional is continuous if, for any pusitive number ¢, there exist pusiive
aumbers T (sufficlently large) and 8 (sufficiently small) such that {f v {s in N 6(“)
fand v and v are both in PBI(R}), then |h{u) = hiv}] < €. The functional will t.hen be
calied continucua(R), and the time.invariant system | that il represents will also be
cailed continucus(R). Any system relerred to as continuous is understood to be time. '
wvariant,
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1 the representatior of Systems ) fweLouals, the function w represents the past
of the wnput. We may thneflire interpret contnuity for nonlinear systems (with respect
W the RT1 topalogy) by the statement thal a system is continwous{R) if, for all inputs
that are bounded(R), the value of the output 18 retatively insensitive to small changes in
w.2 anput, to rapud Ouctuatons (hig.. [requencies) in the input, and to the remote past of
ibe wmput. T

A follows from the first theorem of aection 2,3 that a system H thit is continuous(R)
can Se represented with any desired accuracy by s fimate wabie of values, since *he func.
ticnal that represents it 13 a continuous fu~~uon with ¢ conpact domain, Let any toler-
ance ¢ be givun; then T and & are determined according te the coninuity condition, a
finite set of real {unctioas u, is selecied with the property that the collection of neigh-.
vorhods N‘r,s("l’ cavers PBI(R), and these rea; funclions u, are tabulated with the cor-
respoading values h(“ﬂ-

It will be shown in sectioa 2.5 that & time-unvariant linear syetem is cont'nuous(R)
for any R if und only if s wmpuise response is Letcsgue integrable; this Ls roughly
equivalent to the condition that its transients be damped and that its impulse responge
4 volve no impulses. The set of all such linear 3ys\emun, all products of these systems,
all constant.output systems, and all suins of these, i3 an algebra. The {uncuionals that
represent them consUtute an algedbra of contthuous Junctionals. It is easy to show that
this algebra separates poinws. The Stone.Weierstrass thcorem then implies that any
functional that is continuous(R), with domain PBI{R), can be approximately represented,
with arbitrarily small error, by & functional chosen from this algebra. Hence, any zys-
tem tnat is continucus{R) can be approximated arbitrarily closely in polynomial form.

2.5 CONTINUITY AND COMPACTNESS IN THE RECENT TIME INTERVAL (RTI)
TOPOLOGY

This seciion is devoted to proofs of two statements made in section 2.4: thst a time-

invamant linear system is coninuous(R), fo.- aay R, if and only if its irnpulse response
is Lebesgue integrable; and that the apace PBI(R) is compact in the RTI topology.

The theorem on contunuity of a linear system will be proved first. A time.invariant
livear system is represesied by the funcional ), defined by

Biu) » f i) wly) & {0

wbere h is UiT smpulse responsa of the system. Suppose that h is not Lebesgue inte-
grable: this may be so either because

- -
L |ain)] dr = (s)
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{i.e., h ic not absol. ly integrable), or becauae the imegral of h is oo defined that it
is not equal to the Lebesgue integral (e.g.. h involves impulees). It will be shown in
each of these two rages that } is not continuous{R) for any R,
Suppose bk is not absolutely integrable. Choose €20, andtrytofinda T and &
with the property that if v 18 in Ny ,(u) then jutu) = biv)] < ¢, Bul we can choose u and
v 80 that v{v} ~ u(r) has a constant magnitude less than &/T, and an algebraic sign that
is alwayu equal to the aign ol L{v); thea v {2 in NT, alul. but the ditference hetween hiu)
and L{+) is inlinite.
Now suppose that h contains an impulse of value A (l.e., A is the integral of the
impulse) at v,. Choose ¢ 'ess than j2AR| and try to find s corresponding T and §,
But if we choose v and u 90 that their values ure equal except on a smal! interval tha!
contains v, we can have v in NT"(u) by making this interval small enough and siil)
have fu(r_) ~ vir )| = 2R, with the result that |h(u) = h(v)| » |2AR] > ¢. A similer argu-
ment holds whenever the impulse reasponse is absolutel integrable, but not Lebesgue
integrable, since in that ceee the indefinite integrgl of the impulse response is not abso.
lutely continuous,
Now suppose thai the impulse recponae h is Lebesgue integrable, We prove that jj
is a continuous functional, We consider the domain of the functicnal to be PBI(R) for any

chosen R, and choose any ¢ > 0. Let p a ¢/4R, Now construct a step-function hp -8
real function whose value is constant oo each of n bounded {ntervale and is gero outside

them — so that

rlh (t) = h(v)| d+ € p
o ' P

The existence of such & step-function can be proved from the fundamental defanitions of
the Lebesgue integral; it iz obvious U h is continuous. There is a number M with the
property that {h_(vr}| € M for all v, and a number T with the property that hp(v) « 0 for

all v > T. Let 6 6/60M,
Let v be in N‘l‘ ole) for these valurg of T and 6. Then for uny uae of the n inter.

(6}

vals, saya € v €0, we have

b b
f %(1) u(r) dv -f hp(v) v(v) dr
s a

< va [utr) = vin)} «l <2Mb v ¢/3n
&

b
- |f hp(v)(u(v) = viv)] dr
8

m

Since there ate n intervals,

!hp(u) - h,MI $e¢/s {®)

Also, since u ¢ bounded and hp approximates h,
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lotw) ~ btu)| spR = /é 19)

»0 that am vunu(nn;I-jto'_s’(u)m;plv)wyv)mechmn-manman; and

{atu) ~ Btv)] ce/a ¢ ¢/3 » ¢fa < (10)
and e continuity of § is proved,

We tura row to proviag the statement that the space PHI{R) is compact in the RT1
topology. The proof is acvomplished by redwetio ad absurdum; we assmame that the space
is not compact and dzrive two coatradictors conclusions. i

We begin by consiructing a special set of furctions Yook {n the spae PBI(R). .ne lt\
of functions Ya.k for a mm n 18 construcied by d.. uhng the interval € €+ € 2" into 2
subintervals or length 2™; the value of each function v kK is constam o= each subinterval
and equal to either R or ~R, and is zero far + > 2". For each n, the index k will there-
fore run frum | 10 22 . Since the number of these functions for each = is finite, all
these funcuons, for all a, can be arranged in an inlinite sequence in ocder of increasing n.

With each Va.x V¢ associate the partucuiar neighborhood N.("u""‘r.s“'n.u' defined
by T22" and § 52" PR, It wiil now be shoen that for any n the collection of neigh-
borhoods N‘lvn' \) covers PRI(R). This is equivalent to showing that fac any ¢ in PBI(R)
and for any intcger n we can construct a function "n.k in such a w3y that the magni-~

tude of
r*
E(x) .Jo (vn. k(v) = ulr)] dv i)

1% Jeas thar 2! ™R tor every % inthe interval 0 < x £ 2". We constrect such a function
'vn.h. starting from ¢ « 0, by ihe follcwing procedure. Suppose that ¥, _17) has been
determined on the imerval 0 € v € ro- We stall decide whether the value ot n,k is to
be R or -R on the interval LA A ™, Accoruing to our ¢ xcimeon, E(v) will either
increase or decrease momolonically on this wterval to a value

7002-"
b 4 (7° + 2.“» . E(vol -f uiv)dr & 2"k (12)
T
°
Since
E(r) -J umwg ?™Re2TR=3 2R umn

at least one of these alternatives will make the magmlude of E{r +2Z ) leas than 2'
&ncethem..gmmdeolzh)udwlﬂtmz TR, deumoutculbu
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unerv;l,' the same bound holds everywhere on the interval. We can continue this con.
sirucion over the entire lengih of the (nterval 0 < v € 2", and prove that {or any n the
coliection of S.(vn. \J) covers PBIR).

Now suppose that for each u in PRI(R) wr epecify a aeighborhood N'{u); then the
tollection of ail N'(u) covers PBI(R), and, since we assus. ~ that FBI(R® is not compact,
we sasume that these N'(u) have veen 80 chosen that no finjte subcoliection of these
neighborhoods covers PBI(R). We can prove at the outscet that there is a countable aub.
collection that covers PBI{R) — that 18, a collection that can be ordered {n a sequence,
For each u, N'{a} r N 5(u) for some T and &. Choooe n 80 large that "> T u\d
PP 8/:, There s a A w.th the property that N* (vn x) contains u, and thia n°® tv,
is contained in N'(u}. Thul. t.ctgmng some h‘(v k' to evury u, we obtain a lubcou«:-
tion of the {nfinite sequence of !\ (vﬂ k’ This subcouecnon covers PBI(R) and can be
arranged in a sequence, and each neighburhood is contained in at least one N¥u)., For

each, pick onc of the N'{u) that containg it, We thus oblain a sequence N'(um). ma)2,...,

which covers PBI(R).
Now choose my . 1. No linite zollection of N'(u) covers PPBJ{R), 80 therc is some

function -, in PBI(R) that isa not in N'(ul); out, since the collectian of b“(um) covers
PBI{K), there is an m, with the property that N"“mz) containg ., Consider next the
collection of N‘(um). masi,2,... .m,. This collecvion does not caver PRI{R), sy there
isaw, that is not in any of these neighborhooda, but tnere is an wmy with the property
that w, is N'(“'“S)’ Proceed, in this manner, to construct an infinite sequence of "
with the property that no finite collection of the neighborhoods N'(um) contains more than
a finite number of them,
We shail now contradict this conclusion by proving that for any sequence of functions

] w, in PBI(R) there is at {east one ncigﬁborhood N'{u ) that contains an SnIﬁme aumber of

’ w‘. Congider e collsction of N* v, h) for n = 2. Thil coliection covers PBI(R) ar.d
conums a finite number of ne.ghborhoodl, 50 that at jeast one of them, which we shall
call N (vz), contains an U\ﬂnﬂy of w,. If we consider only the w, that urc contained in

. N (vz), the collection of N (v ) for n = 3 must contajn at lcast one \3 (vl) that contains

N an mhmty of these w We proceed in this way, 10 conBiruct a sequence of nejghbore.
hoods N° lvj), each of which contains an infinity of v including any w, that is contained
in any N {v,} that follows it in the sequence.

: We now define the functions V e

x
V’(:)-j.. v’(v) dy 14)

it can be shown (hat for every x the sequence of numbers V (x} forms a convergent
sequence, so these functions V_ have a limit function Vo. It car. also be shown that Vo

is abaolutely continuous, and that the magnitude of its derivative does not cxceed R, so
there is 8 {unctinn v, in PBI(R) with the property that
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It will b2 seen that every aeighborhood of v, caswmms aa infinity of w,. Siace there is
at least one N'(um) that contains v , ad every amgtborood thet containg v, tontains &
neghborhood of Vo the N‘(ua) contains an mlim:ty of <. This statement contradicts
our previous conclusion. The assumption that PBKR) is not compact bes led W a con.
tradicuon, and we conclude that PBI(R) is compuct.

2.6 HYSTERENS

Hysteresis 18 ofien mentioned as a typical pheasesenon of nonlinear systems, Exam.
inatuon of methods of approximate npum of =c=linear gystems icads to a general
iropression that these methods fall when hysterem:s occurs. However, a geoeral defini.
uon of hysteresis ia necessary before this unpcression can be promoted o the status of a
canclusion, Such a definituion will be proposed += this recuon, [t mill then be shown that
syuicms that exhibit the phenomenon of hysteresis are aot continuour, in the gsense in
which continuity was defined in section 2. 4.

The phenomenon of hysteresis is usually soderswod in terms of a hysteresis loop.

D

(ot ™)

(¢} (L}]

Fig. 1. Hymeresis oops. (a) Ko byweeresis. (b) With hystereals,
{c) Two systems with bvaterzsas. (d) Sum of the two sys-
tems io (c},
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A system that exhibite hysteresis 18 contrasted with a syster, in which the instantaneous
value of the output, y, i8 uniquely determined by the instantanecus value of the input, x,
as in Fig, 1a. This is a typical no-memory system,

A system with hysteresis is then considered as one thst, "lor 8 given valye of the
input, may have one of several different output valuea, The aystem is, at any time, in
one of several statep, the state depending not only on the value of the input, but aleo on
previous states of the system; the state depends, however, only upon the order, and not
upon the time, in which these previous staies were passed through. /v graph repre.
senting such 8 system is shown in Fig. 1b, (For the sake of sitmplicity, the sides of the
loop are made vertical,) When x changes, y, if the graph indicates more than one pos.
sible value, assumes the value nearest to the value it had most recently, The vertical
parts of tne loop can therefore be travers=d only in the indicated direction,

In the system of Fig. 1b the atate uf the system can be determined from the Input
and output values, but this ia not alwaye true, Consider the svotem of Fig. 1d, which
is formed from the two systems of Fig. Ic by appiying the same input to eack, and adding
the outputs. If the two loopnm of Fig., lc were of the same height, points A and A' of
Fig. 1< would indicate the same input and the same cutput, but would represent different
states,

In such simple cases as these, we can say that the output of a hysteretic system
depends on its paat history, whereas the output of a nonhysteret:-c system doea nt. But
thiv statement ig8 not sufficient in a general context, when t’ tput of a nonh,seretic
‘sys'em (e.g., a linear syst~m) also depends on the past of the input. To define hyster-.
esis for gencral time.invariant systems, we use two conditions that may be deduced
from the graphs of Figs. tb and 1d, but are meaningful also in a general context,

1n a hysteretic system it is possible, first, to specily two inputs, different for t < 0
but equal for t > 0, for which the difference between the corresponding outputs doea not
converge to gero ag t = w, Second, it is possible to specify an input for t > 0 in such a
way that for any two inputs, arbitrarily different for t < 0 but with the specified form for
t > 9, the difference between the corresj.unding outputa always converges to zero ae
t = «., (The condition uf convergerce ioward zero {8 used, instead of equality to zero,
to allow for dependence of the output on the finitely remote past of the input.)

Any system that (s continuous{R) is an example of a system that does not satiely the
firat condition, since, for any ¢, we speclfy T ar in the definition in section 2.4, and
the outputs for t > T must differ by less than ¢. An example of a system that satisfies
the firgl condition, but not the second, ie an tdeal linear integrator,

We can prove, by using the principle of superposition, that a linear system must be
nonhysteretic. 1lf two inputs are different for t < 0 and both are zero for t > 0, then
adding to each input & specified component for t > 0 can only add to each &mlput a come.
ponent that is the same for both outputs, and cannot change the difference between the
outputs. Hence if a linear system satlisfies the firet condition for hysteresis, it cannot
satisf{y the second.
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A system capable of subharmonic response (0 a sinusoidal inpnx satistiea the first
condition of hystereais, since two inputs that are equal for t > 0 may pave rise (0 Sub.
harmonic outputs 1n different phase, I, in such 8 sysiem, the output tends to gero when
the input becomes and remains gero, the second condition is satasfred and the system is
hytteretic,

Since a hysteretic aystem i3 not continuous, it cannot be afA waisug1ed arbitrarily
closely, in the uniform topology, by continuous systems. Howevzr, for some hysteretic
systems and some input ensembles, it may be possible to find conunaous systems that
approximate the output with arbitrardy small error except for an arbitrarily sma!l probe.
ability of large evror. The reason is that the secoid condition in the definition of hys.
terzsis implies that eventa can occur in the input that make the system forgetl what
happened before them, For some ensembles and inpuls there can be a positive probability
of guch an event occurring in a bounded time interval, and this protability will approach
unity as the length of the interval increases; thus a system whose ouTput depends elfec.
tively on a finite portion of the past of the input may be made to approximate the output
with arbitrarily small probability of large errur.

2.7 SUMMARY

The principal ideas and conclusions are outlined in this section, These ideas form
the foundation of the methods of representation that will be discussed ia subsequent
sections.

The input to a systzm is represented by a reud faction f; the value of the input ut
time t is f(t). The output is similarly represented by a real function g. If f ja Lebeague
measurable, and |f,t)] & R for all t, then f is said 10 be bounded{R).

A nonlinear system H is a function. It assigns to every input f (in a specified set)
a corresponding output g = H(().

A ume-invariant system }H can be represented by a functional b. The value of the
odJdtput at time t is determined from the function vy defined by ul(t) = {{t-v), * 30, then
g(ut) = g{t), If { is bounded{R), then u, is an element of the set of functions called PBI{R),

A topology i# a scheme of approximation criteria; a neighborhood 18 a eet of approxi.
mations satisfying some criterion. On the space PBI(R) we define the RTI topology by
the condition that, for T > 0, § > 0, the function v is in the neightorhood NT,B("') of the
function u if and ondy if

X
f [utr) ~ v(*)]) dv¢} < & (18)
° .

whenever 0 a x & T,

A time.invariant system H, conaidered only for inputs that are bounded(R), ia said
to be continuous(R) if, for any € > 0, there exist T > 0, §> 0 (T sulficiently large, &
sufficiently small) such that {f u and v are in PBI{R) and v 13 in NT,Q(“)‘ then

|htu) =~ niv)| < €.
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It H is continuous(R), then for any ¢ > 0 there is a finite set of functions v, 1n PBIRY,
and a neighborhood N‘l‘ LA ) of each u i such that every u in PBI(R) is in at least one of
these neighbor10ods, and if u is in NT sl then [n(u) - htu] < c.

It H ts continuous(R), then for any ¢ > 0 there i» a polynomial systemn ﬂ‘, consisting
of a sum of a constant, a linear system with Lebesgue integrable impulse responae, and
products of such linear eystems, such that, for any input that is bounded(R), the values
of the outputs of }{ and u‘ never differ by more than «.
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1ll, A MGITAL. APPARATUS

' THEQRY

A2 on illustration of some of the resulta of Section I, a descripuon arnd discuscion
of a hypothetical apparatus for the analysis and synthesis of nonlinear sysiems will be
presented. The apparatus is designed for the laboratory examination of an unknown 8)s-
tem and the synthemis of an appruximately equivalent sysiem. It has not been bullt
becausz it doew not appear to be practicul, but some of its principles are interesung.

The apparatus is based on the approximate representation of functionals by nieans
of tubles of valucs. To represent & functional h, we tabulate the values of hiu) for a
finite number of real functions u. The functions for which values are tabulated in this
apparatus are simuar to the functions v“'k used in the proof of a theorem ir Section LI,
They are cunstructed by quantizing time :n intervals of equal length q and by making the
value of the funcuon conatant, and equal to either R or -R, or each interval, We shall
call such functions quantized functions, They can be represeited as sequences of binary
symbols, 1 for value R and 0 for -R,

Given any input function f that is bounded(R}), we generate a quantized functian {* to

B
approximate it in the sense¢ that f H{ t'(l)] dt] 1» :nade as small as possible for
A

cvery A and B, The valuc of {* on each g-interval must cbviously be determined

later than the beginning of that interval, without any knowledge of the values { will nave
on that interval, We may use a fecedback methiod, ~nd the error of approximation can be
determined by means of an integrator, The input to the integrator will be f - {*, and
the outpuat will be the error signal e,

t
ett) .f (tix) - £*0x)] dx - )
-l

and, at the beginning of each q.interval, we make the value of {® equal to R on that
wnterval if e(t) is positive, and equal 10 ~R if e{t) is negative; il e{t) = O we make an arm.
trary chuice,

On an anterval of length g, {* will contribute a change of magnitude QR 1o the value
of ©, with s oppous:te 1o the sifm of e al the beginnung of tae interval, whereas [ wall
contribute an unprediciable change of mangilude that does not exceed qR, 80 that the
value of e(1) will be kept within the bounds ¢! 22qR. Then

B
L {1y - £2(0)] d&{ 2 le(A) ~ e(B)| < 4qR (18)

This error is attributable party to quantization and partly to the delay in usang the
vaiues of { 1o determune the values of (*, Inderivang from (® an approxan ation to .
1t 18 thercfore vegirable to make use of the (4ct that {® can be predicied up to the enc of
the present interval, We Jduefine u"(ﬂ s [*(1* -~ v), where 1715 the end of the q-interval
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contagung t. This means that l:'t') is comstant on intervals of leugth q, starting from
v s 0, and the values of u{ on theee tMervals are the values already determuned for (*,
beginnung with the most cecent. Then for all § and all &,

U e - i ar] <o e

Given a system H ‘hat is continuous{R), and paven ¢ as the desired wolerance for the
output, determine T and § to satisfly the continuaty definition, and let g » §/¢R. Let a
te the semallest integer Uhat in not less than T/q (:. €., the number of intervals of length
q needed 10 cover an interval of length T), u: need ue defined only on the first n inter.
vals of length q, and may be taken as sero fcr v > 0q, Then u: is in !\’.‘."(u'). and
therefore [h(u?) - hlu)| <«

The (unction ul‘ can be represented as a 8 quence of i binary digits. It must be one
of 2° possible funclions u®, each of vhuch is represented by a binary nvmbes. For each
number we tabulate hiu®).

ln many cases il is not practical to determire in advance the appropriate T and &
for a given ¢. - such cases, n and g can be chosen arbatrarily, and if the resulung
error turas out  oe too large, it can always be made smaller by choosing q smaller
and nq larger.

3.2 CONSTRUCTION AND OPZRATION

Two devices are conceived for the impliementation of this theory, an analysis device
{for .zamining a system in the laboratlory) and a synthesis device, The syathesis device
would corsist of two paris, one 8 quantizer to dctermine u:. and the other a storage
device that contains previously determined values of h{u®) and produces, at every time
1, the value b’ .. The anaiysie device generates quantized inputs {, so that, at certain
umes t, u, has the form of u®, and records the values of the outpu’ at these times as
biu®).

F gure 2 illusira .es the quantizer, The interval length q is determined by the fre.
querc o7 1 .e pulse generator, and o 16 the number of stages in the siufl register. The
chift 7¢;, =:icr holds, at ail umes, the last n digita of (®, and delivers these, as ug, to
th® s.c.  ~ oit, which, in turn, dzlivers the output, The curves in Fig. 2 were calcu.
lated .. . .cate typical operauon of t» guantizer.

The an  ys1s device consicts of two paris, a generator that generates quantized inputs
and a swc:as® unit to record "oe oulput values. In using tas device, it 18 not necessary
to wain for the evaterr. that is being tested to return to sis rest state before every
sequerce of r dig.:s of input tecause the system is sensitive, within the wpecified tler-
ance, only to the last n digits of any lang wnput sequence, We can therelore use a long
sequence of dugits with the property wnat everv pussible sequence of n digis 4s contained
i, r example, the segquerce (1100 conwaina the two.digit groups 01, 11, lv, 00 in
that order; sumilarly the sequrnce 9100011101 contains all possible segueaces of three

2)
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Fig. 2.

Quantizer,

dagits, Alternatively, we can use 2 random sequence of digits; the probabilily is unay

that a random sequence will eventually include ali possible sequences of length n, A

randuom sequence nught be generated by using the quantizer with a whitc-noise input,
The uze of random inputs « "ggests the application of the apparatus to the synthesis

of Liiters according to statastical criteria {e.g., for an enscmble of inputs consisting of

a signal currupted by noise, in order 10 minimize the mean-square difference between
the signal and the output)., The functions uy {which represent the past of the input) will,
in general, form a probability ensenible, and for each uy the value d(1) of the desired

output, of which the cutlput gft) of the system is to be an estimate, will have a conditional
probability disteibution. The opumum estimate can be derived by are of many possibie

criteria from thus conditinna) distribstaon,

In many cases we can approximale the div-

tr:hution of d(t} conditioned on u, by the 2istribution of d(1) conlitioned on the quantized

appreximation, u", tou.

We m.ght therefore use a long sample of the input and the

des.red output, put the input into the quantizer, and for each u® rerord samples of the

corresponding valuce of ke Jdesired ovtnut,
inany samples of the desired output for each u®. We cstinmate the condiuonal disiribution

1 the sample is large enough, we obtan
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(rom these smacies, Compute the optitum eeiimaie of the demired output from this dis.
tnbutios, a=2 reced the opticrrum esnimate as Ju®). For suie estimation criteria there
may b¢ eamer TAYS 10 derive the optimurn cstunale froms the samplea; the process
described 18 general,

3.3 EXAMPLE

We mw caiculate, for a very sampie system, the requirements on & and q for syn-
thesis of ae system by mueans of the apparatus deacribed in the preceding section, Con-
sader the lmtar system With fregeency responst a/{sea), that is, with impulse ~esponse

"7, Twe s a lowpass filler with unity low-frequency gain,

For thus system,

) xr ae”’7 uir) dv (z0)

The system 13 coctinucus(R) for every R. Suppose v isan N‘l‘ 1.(n). Then whenever
0<x €T, we Inve ’

3
’f Satr) - ¥tr)) dvl <% zn
“0
T..2a

) [ ad a3 .
R R A [um—ﬁnldr!
T
€ }aL e atr) - vt} dr‘ +a ’1’ e 2 [lutx)] + Ivin)}] as

T
< as(e."m(v) - V('NI oo’ f e 7(Ltr) - V(n) dvl r2r T
) i

cab+ 2R 2T (22)

in which we have integrated by parts, using

Ciz) -f wvjdv, Vix) R[ vis) ds =3

Next, Savizg seiecled { as the tolerance an the output, we choose T and § s that

strzre Y ¢ (24)
and set q = $/4R, n = T/q, so thet

peze™ /R (2%)
I e difficwd: w mirumize e storage that is requires {i.e., to minamize n), but
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some bounds are easy to obtain, T must be greater than (1/a) log (2R/¢), sad q wust
be less than ¢/4aR; hence, n = T/q must be greater than (4R/¢) log (2R/¢), which gives
a lower bound on n (log » natural Jogarithm), We obtain an upper bound on the minimum
n by finding the o that is required if we arbitraziy choose T and & 80 that ab s 2Re ™7,
We obtain T = (1/a) log (4R/€), q = ¢/8aR, and n = {8R/¢) log (4R /).

If we sct & tolerance of 10 per cont (R/¢ = 10), then 120 < n < 300, approximntely,

and the minimum number of stored values required is between 1036 and |o°°.

3.4 CONCL.USIONS

For R/¢ = 10, a set of 11 numbers can be so determined that the output will always
be within € of at least ont of them. The requirement of 1036 stored values seems,
therefore, to imply a very inefficient scheme of synthesis, Part of this lasge storage
requirement arises from the fact that many widely different functions u will have the
same h{u), and this grouping, since it depends on the aystem, cannot be built into the
apparatus in advance. The saine valuz of hlu) therefore must be stored acparately for
many dufferent functions u, However, there are still several sources of inefficiency
that might be corrected,

The inefliciency of the apparatus arises partly from the fact that u: is derived {rom
& quantized approximation to [, This impo2es certain constiraints on the quantizad
apprazimation 10 u. It can be shown that if the quantized approximation u: s derived
directly from u,. so that these constraints are not imposed, we can construct {or every
u in PBy,]) a u® with the property that

x
LL {ulv) -ut(r}] d7| <R (26)

instead of 4qR. Such a u: can be constructed by using n lirear filters, of which
the &P fater, k= 1,2,...,n, hasv an impulee responss taat is | from sero to kn
and zero thereafter, and by quantizing the output of each filter. Thea q can be
chosen to be four times as large for the same T and §, and, in the example of
section 3,3, the minimum number of stored vealues will be betweoan 10’ and lo”.
|Although the quantized output of the kP fiter has k¢ 1 possible values, and hence
2"(n+1)1 conceivable combinations of values, only 2" of these combinations are
possible If the isput is bounded(R).]

There is another source of inefficiency that might be removed. Although data on the
past of the 1nput have been taken only from a bounued interval of the recent past, as
much data have been taken from the more remote paris of this interval as from Uwe more
recent varts, and this (s unnecessary. We can correct this by muking the q-intervals
longer for the remote past than {or the recent past. This can be done simply by omitiing
some of the filters {rom the eet described. This would effect a further substantial

24

- w mr A - .G ———— . .

-

e A s s - e e ————— -

oy r - e MR D P Yy BTy e g

tave 2w pap |




reduction in the namber of sXred values that is required.
The apparatus that is thus evolved, consisuag of linear filters with quantised
£
outputs, i1s practically ssmilar to, although differeat in derivation from, the appa-
ratus proposed by Base (V). :
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1V. ANALYTIC SYSTEMS .

4.1 THEORY

One of the conclus;ona of Section LI was that any system that is continuous(R) can be
approzimated arbitrarily closely by a polynomial system constructed from linsar sys.
tems whose impulse responses are Lebesgue integradble, This polynomial system is a
aum of a constant, a linear system, and products of linear systems.

The output ¢ 1 constant system can be represented by a (ixed real number; the out.
put of a Jnear sysicm can be represcnted by means of a convolution integral. For a
product of linear systema, whose impulse iesponse functions are hl"z' vees kn, we have

- n
g -f ves f‘ ﬁ kyir,) 1 - v)dr o dr 27
. -0 -0 s} isl |
where { represcnts the input and g the output. Or, if we write
Bl eeca T mKylr ) kplry) oy K (7)) {28)
we have
) i
glt) -f_: e '/:. UL YRR pis (e - v)dv,...dv, 29

This is, at least in a restricted sense, 3 system of ath degree, since multiplying
the ingut by & constunt A results in multiplying the output by A", The function h_ (which
is Lebesgue integrable) will be called the system function,

The sum of two n'® degree systema is an nth degree system whose system function
is the sum of the syatera functions of the summands, Therefore, the representation of
a polynomial system requires only one term of each degree:

© [ )
(t)s h ff h.(7) {(*=+) dv ¢ f h,(r,, {9t - f(t - dv . d
giahgt) My L o 2l Tt - ) ML = vp) dvydr,

- N
®as ¢ . (¥ ,00ne0 Tyl ft~v)dr ...d 30
f f_:nﬂ'l ™ J_I‘ T dTe.dry (30

-$0

Any contlLiuous system can be approximated srbitrarily closely in this form,

The domals .. ‘caled in thege integrals has been chosen as (~w, w) 80 that physically
unrealizable systemns can also be represenisd. For a physicaliy realizadble system, each
system function hn will have the vaiue sero whenever any of its arguments is regative,
and the integrals can then be takew on (0, »).

For convenience in cerlain computations, we define the system transforms “n by

[ -«
Hn(ll.....ln) -f- f.. hn('r'""n) axp’ 8,7 e --nv") dv'...dvn (3
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{in particalar, uo = h ). Since the sysiem functions are sbeolutely integrable, these
transforms can be defined as Fourier transforms, with L jal. and as such they will
always be well defined, Alternatively, U the system s physically realizable, they can
be delined as Lapluece transforms, with 5, 20, U the system transforms are known, the
aystem functions can be d»>tcrmined (at least theoreiically),

The scon >f this furmula will be extended in two ways, First, we form s power
f erics by allowing an infinity of terms; second, we relax the condition of Lebecague inte-
grability to a condition of absolute integrability that permits impulses in the system func-
tions. By using impulues, we can approximste some no-memory systema, even though
such systems are never continuous(R), '

Having extended the scope of the formula, we must impose some restrictions on the
sysiem [unctions in order lo guarartee that the formula will specify a unique output for
every input in a well-defined set. We define the norms of the aystem funct.ons by

e

L4 L J
nhnl -f‘ see fw 'hn"'ln"vo'n,l leoagd'n (32,

{in particular, |h°| - lhol). We then require that all these norms be finite and that the
power series

P S

e

~
By, lx) o Z fn ) " (33)
=0

-,

less than R“, all the integrals will converge absolutely, the series will converge abso.
lutely, and the output will be bounded(BH(R)); that is, the value of the ~atput will never - \
have magnitude greater than BH(R). The functon BH will be «..11nd the bound function .
of the systero H, and RH will be called the radius of convergence of the system. A sys.-
tem that can be exactly represented in this form, with these conditions, will be csllad
an analytic system.

The sysiem functions of an analytic sys'em are not unique; in fact, any hn can be
altered by permuting its arguments I TERETR A without altering the system, However,
it can be shcown thal unique system functions are obtained under the condition that the
system functions be symmetric, i.e,, that they be unaltered by any permutation of their
arguments. If a system is specified with unaymmetric svstem functions, we can replace
each gystein function by the arithmetic mean of the {unctions obtained by all possible

have a n'ox_ucrcc radius of convergence Ry. Then, i the input is bounded(R) for any R ' \

permutations of ils arguments, and the resulting system functions wiil te symmetric
and will define the same system.

It can be shown, by using the concept of multilinesr functions, that the analytic sys.
tem is a generalizstion of the power series [cf. Hilie (14)]. A function { of n srguments
ts called & symumetric n-linear (unction if it s symmetric and {f it {a linear in each argu.
ment, We sre interesied in two cases, the {familiar case in which the arguments are
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real numbers, and the case in which the arguments are real fvuctions, Any n.linear

function of n real numbers X e%g)0000X CON be written in the form .

ﬂx‘.....xn)-ﬁu.:z... %, : ) (34)
where A is a fixed number, The function l_!“ defined by g e ﬂn(!‘. ...,l )y where
g,rl. +veof, are all real functions snd

““"f f h (v,,.... AR ['1l flv-v)dr,...dv, (39)

where h is a real-valued symmetric function of n real variables, is also a symmetric
n- llnear function. Now define a homogene- .5 function of n‘ degree as a funcon of »
single argutnent thit can be derived iront « ayuunettic n-linear function by setting all

the arguments equal: X 8%, 8...5Xx =X, of {. = (2 s,,.» 'n s {; define a power
series us an infinite summation of homogeneous functione, With real-number arguments,
we obtain the familiar power series; frem the n-lincar function with reul-function argu«
t1 2" we derive the formula that we have used to represent analytic systems.

4.2 EXAMPLES

Two kinas 0. exampled are to be described here; general analytic systems with par-
ticular kinds of inputs, and particular kinds of analytc systems considered without
resiricuon on the input {except boundednessy),

In the study of linear systems, particular ¢ phasis {s placed on two kinds of inputs:
impulses, which place in evidence the physical significance of the impiuise response,
and sinusoids (or exponentials), which perform a like service for the transform of the g

camy

impulse response. Sums of umpulses, or sums of stnusoids, are trivially accounted
for by superposition; bul superposition does not hold in nonlinear systems.

Consider an analytic system whose input !y a sum of imptses, Strictly, this is not
permnisuible, because a well-defined vutput is guaranteed only for bounded tnputs, How.
ever, a formal result can be obtained, and, since laboratory approximations to impulses
are really bounded pulses, the formal result hos a practical interpretation. For the
saxe of simplicity, we consider an analytic system with only one term, i,e,, all the sys- )
tem functions except one are zero; a general analytic system is a sum-of-such systems,

Let the input { to such a system be

1) = Z Agdt =T, {3¢)
mal
that is, a sum of M itnpulses, with the m'h impulse having the value Am and

ovccurring at tiine ‘l‘m. Then the output g of the system ia given by
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Each permutation of every combination of n impulses (not necessardy n different
impulscs) chosen [rom the input thus gives 3 contribution to the output; this output is
equal to the product of the values of these impulses with an apprepruste value of the oys.
tem function. The wntegrals that appesr in the general eapression for the output have
teen, in effect, replaced by sums. If we consider a general input as approximable by
a sum of impulses, then the output at any time is a weighted sum of products of past
values of the input, the weighuing being determined by the syatem funcuions. The system
functions of an analytic system might therefore be considered as i\a impulse response
functions,

Now suppose the input is a sum ol sinusoids, or, since a sinusvid can be expressed
as a sum of complex exponentials, suppose the input is a sum of expor.entials, Thus

M
f(t) = 2 Am exp(sml) {18)
mal

Then the output g of the system ie given by

M M
s Z Z Am.Amz‘“ Aman (lml.....smn) exp[(lml+... olmn)l]
ml-l mntl )

{3%)

Each permutation ¢f every combinatior of . exponentiats {not neceesarily n different
exponentials) chosen from the input gives a contribution to the output thal is an exponen.
tial with a complex frequency equal io the sum o! 'he frequencies uf these exponentials,
and wi an ampiitude that is equal to the product of the amplitudes of these exponentials
and an appropriate valu? of the system transform. Since a sinusoid is a sum of (wo
complex exponentials, each with frequency equal to the negatave of the other, these
contributions account for the harmonics, surn frequencies, and differcnce ‘requencies
that we know occur in nonlinear systems. The system transform gives, in terms of the
magnitudes and phases of the inpu’ sinusoids, the magnitude and phase of each sinusoid
in the output, The system transiorms might therefore be considered as {requency-
response functions.

We now consider some special types of analvtic sysiems. First, we consider the
identity system, whose output always equals its input. We shall represent this system
by ]. This is & linear no-memory system. All {is syestem funclions are zero eacept
the first, s,. which is s unit impulse; hence, all its sysiem wransforms are tero except
the first, l‘(l) sl
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Next, we consider \wo types of aystems that are essy to deal with by methods that
are already in wide use: linear systems and no-memory systems. A linear system is
analytic, with infinite radius of convergence, if its impulse response is absolutely inte-
grable; this impulae respunse (s then its {irst system function, and all the other system
functions are sero. The first 3ysiem transform (s the {requency.response function of
the linear system, and sll otter aystem transforms are gsero. Conversely, an analytic
system {a linear if all 1ts system functiana (or system transformas) are gero except the
first,

A no-memcry system is analytic if the value of the ou(pul is given in terme of the
value of the input Ly a power sesies, and its radius of convergence is the radius of con.
vergznce of this power series. 1f

g e ) a (40)

ne0
tien the sygtem f{wictions are all products of impulses,

hnhl‘ ceee vn) s lns(v‘) 6(72) vae an) (41)

ol Rl

which indicates that the value of the output at any time is independent of past vilues of
the tnput, The system transformse are all constanta,

Hn('l""’.n) e, {42}
whach indicates that if the input is & sum of sinusoids, the amplitude and phase of the
output sinusvids are inceperdent of the frequencies of the input sinusoids. Cunversely,
il the system trunsforms of an analytic system are all constants, the system is & no-

memory system,
4.3 COMBINATIONS OF ANALYTIC SYSTEMS

B _ause engineering, at the practical level, consists largely of putting things together
and making them work, analysis and synthesis have become important parts of the theory
of linear systems, and they may be expected 10 be important in the theory of nonlinear
systems ad well, Analysis is generally easier than synthesis, and jt may be that the
best way to develop a good theory of wynthesis 18 10 develop {irst a good theory of analy. ;
8is. An approach to the analysis of nonlinear syslems is proposed in this seciion und :
elaborated in subsequent sections,

In the fundamental approach we begin with anulytic systems und interconnect them in
several wayg, with the object of ¢etermining when the result of this interconnection cone
stitules an analytic system, and, whenever it does, what it: system functions or system
transforms are. Many practical systems can be described as combinations of linear and
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no.memory systema, which can be caaily represented in gnalytic form. For such sys-

tems, this approach may be, for some purposes, an adequate method of analysis, We

begin with some simple forme of interconanection: sums, producls, and cascade com-
binationJ.

Boc #o03- Nal® ,:‘,-\'."»-~m|~( y N
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The sum }] + K of two systems H and K is constructed by nving their inputs together,
80 that the same input is applied to both, and adding their outputs. Thus, Qe H ¢ K if
and only if, for every input {, QUi} = HID + K(f).

1f the systerns H and K are anslyiic, 8 trivial calculation gives the resvit that the
system functions of Q are

Girpecrdeb dr, . v )¢ ln('l"""n) (L3)]

and the system transforms of Q are

Uiso-a8 )sH s, ...,8)+K(a,....0) R L

e ek Aot pu < Gl Dokl S 4B Fundeg s

But these results are not sulficient to show that Q is analylic, asince we si... bave to

show the existence of a bound function and a nonzero radius of conve: ,cnce, However,
this is not difficult, It folluws {rom Eq. 43 that

'qﬂl < nhnn L |

145)

and frem this bound on the norms of the sy . . uctiona of Q we can determine an

upper bound on «he bound functirn, ,'t

Bgix) € Byy(x) + By (x) ) (46)
and a lower bound on the radius of convergence,

RQ 2 min (RH. BK) ‘ (e7)

Note that if || 18 a system of degrez N (i.e., all system functions after the N are

zero), and X is a system of degree M, then the degree of Q will not excced the larger

of the two numbers N, M. s
Almost as earily tre-ted ig the product HK of t1.0 aystems, constructed by tying the

inputs togetker and muluplying the outputs: Qifi = H() Ki{fl. If H and K are analytc, &

straightforward calculation of the output of their product, after terms of like degree are
collected, yirelds

(ot ALty B el D i am Lol bR N e i [OREIRREI N QUX PF A VARSI

n
qn(’l:'ooo'n) s z h‘(".,..., "’ kn_‘("’lc---n'n’ {48) ‘
i=0
and
3
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Qn(ll..u..n) - Z ‘l‘“l.--o..‘, K-’l'.l.l'.....a' R ' (‘9’
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From this, we determine tmt
n .
faad <) Ind-Ix 8 (50)

is0

from which it follows that

Beia) & Bytx) Bt {s1)
and
RQ ® min (RH.RKJ {52)

1{ |} is a system of degwee N, and ¥ is a system of degree M, then the Gegree of Q
will not exceed N ¢ M. :

‘ILhe cagscade combizatica H ¢ X of two g¥sterus H and K i formed by applying the
input to K, using the ouput of K as the lnput 10 H, and taking the output [rom H. Then
Q= H e K if and vy if, for every input I, Q{f) = H(K(N). NotevatHe Kand he Hare
not the same, although ib special cases (e.g., linear systems) they are equivalent.

The system funcuons and system transfrms of Q are given br formulag that are
derived, ap in the product case, by a straightforward computation of the output, in which
ter:;w of like degree are thea collected. These [ormulas are rather complicated in the
general cage, although they can be expressed fairly simply in certain almost general
cases.

The first step in the calczlation of q or G is lo determine, for every positive inte-
ger i, all possible permutations of combinations of i non-negalive integers whose sun
is n. In each permutanon these i iategers will be called mj.jzl,z,. vesi. The system
function <, is given by » .aavolution-like integral involving hn and kmx,k see ..km‘: _

ﬂz

[ ] »
f {
qn"l"""n)';z e h‘“'."”“,jgl hmj(...,v( )-xj....)dxl...dx‘
Y --

-

(53)

The order of the subscript indices on the v's is immaterial, because permutation of the
arguments of a syatem funcuon does not change the system It characterizes; hence they
are not indicated, The only important pount to remember 13 that there should be one of
each, from | through a, and the v's might as wel! be indexed in the order in which they
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apprar when the km are written un order of increasing §, The second summation sign
]

in this formula indicates a summation over the set of peﬂ.muu«n indicated at the
beginning of the paragraph,
The system transforme Q  are given by

- o
i
Qe -.enu) = ;ﬂ e e 1[3' Kep (oos08g o) (L

Amoe i# the sum of the mJ urguments of Km « 1n this formula, as in formula $3, the

second summation is over all permutations of | numbers m, whost sum is n, and the
s-variubles may be {ndexed 1,,..,n in any order,

In the gencral case an infinite sumr mation is required for the determination of each
system transform or system function. However, when i is greater than n, every com-
Therefore, there are
two special cased In which each c, can be determined a8 a sum of a finite nurber of
terms: when H 18 a system of finite degree, and when Ko =0,

In many practical systems it is posaible to obtain 3 description 1n which the compo-

bination of mj must contain gt least one m, that is equal 10 zero0,

nents are analytic systems with zero constant (¢rms, by (irst solving for the particular
case of zero input 1o determine the operating pointe, and then measuring sll variatles
with respect to thege operaling pointa, U bous systems in a cascade combination have
tero constant terms {i.e., Ho = Ko = 0), then (or the first few gystem transuforms of the

cascade combination we obtain
Q° =0
Q‘(a) » H‘(I) Kl(c)
Q(5,,8,) a1 (s, +8,)K,(8,,8,) + Hy(s,,8.)K,(5,)K,(s)) (55)

In analytic systems, as in linear systerns, the solution of the cescade problem
involves integration in the time domain, but doea not involve integration if the solution
is expregsed in the frequency domain,

To determine bounds on norms, bound function, and radivs of corvergence, in the
general case, we obtain -

[ 4
. i
N EDIDN NG N | 561

i=0

from which it car be shown that

BQ(X) < BH(BK(x))
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RQ # min (R, solution of B, (x) = R} ) (38}

Jhe resulant sysiem Q will not always be analytuc, there might not be any nongero
raJius of convergence uf K, is greater than Ry,. However, the same conditions that
ensuzed that the system {unctions and system transforme of Q could be computed by a
finite summation will also ensure the analytcity of Q.

If the curcponents of a cascade comhinauon are of degree N and M, respectively,
the degree of the resultant syvtem will not exceed N,

In all cases, sum, product, and caacade, the bounds on the bound function are
immediately obvicus if they are regarded only as bounds on the output, However, the
bourkis on the bound funclions provide more aformation than this, The coelficients of
the power-series expanfuc of the bound provide upper bounds on the norms of the sys.
tem funcuions, Furthermore, the {ormulas for bounds on the bo'rd functions and radil
ol convergence remain valid if the bound functions and radii of convergence that appear
u. e form-uas are replaced by bounds that have been obtained from a previous calcy-
lation,

The bound functions of combination systems do not have to be computed by powers.
series methods; they may be computed graphicaliy or namerically, Because the system
calculalions mue! be performed by calculsting the system functions or transforms ons
at a ume, the bound functions provide a useful m_thnd for controlling their accurac~
If, for example, only the first three system ! “..t« - {4 combination system are cal.
culated, a bound on the error can be obtaired by . Btracting from the upper bound of
its bound funclion e first three terms of its power.series expansion, The regulting
hmction gives, for every R, »n upper bound ot the magnhitude of the error for inpats
that are bounded(R).

4.4 EXAMPLES OF CASCADE SYSTEMS

It may oflen happen in practice that only one system in & cascade chain 18 nonlinear,
and all the others are luiear, 1a such a chain some fairly simple and easily recognizable
forms are obwined for the solutior..

For a linear ryste - !. followed by & nonlinear analytic system H (i.e., for the
combination Q a H L), we oblain

Qn(.-l,....sn) . Hn(-l. oo B) Ll(s‘) Ll“z’ Ll(n“) {159)

For a nonlinear system followed by 8 iinear system (i.e., for the combination
Q=L * H), we obuain

Qn"l"”"n’ = Ll“l"z"" +8) “n"l"""nl {60}
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For a nonlinear system }| precceded by a linear system L and followed by a linear
systern K {i.c,, for *he combination Qs K » H ¢ L), we obtain

(Bi0eees8 )oK (8, 4.0 ¢8 )H (B, ucu,8 )L (8,)... Liis) N
f n 11 n’nt i n’ 11 1%'n

In the particular case in which the nonlinear system }{ is a no-memory system, eo thet :
each system transform "n is a constant An. we have

Qs ..n8 ) e A K (s ¢, t0 )L (8)... Ls) (62)

This form is so easy to recognize that it can be used for cynthesis, since any
analytic gysiem whose system transforms are of this form must be a cascade
combination of linear systems with cne no.memory system, or the equivalent of
such a combination,

As an illustration of the solution of cascade combination syetems, we consider
an amplitude-modulated radio communication system. We shall suppose that the
carrier and the signal are added in the transmitter, and pass through a nonlinear
no-memory device thal acts as a modulat.-. "he output of the modulator passes
through a radiofrequency amplifier, a propagation path, and several radiofrequency
ainplifiere in uie receiver, all of which are represenied by a linear narrow.band
filter, Another nonlinear no-memory device acts as a detector, and the output of the
detector then passes through a sequence of audio-frequency devices, represented
by @ linear filter,

The modulator will be assumed to be a second-degree sysicm, whose output y in
terms of its input x is given by

! ysmx+ mzxz (63)

The radiofrequency channel wil] be assumed to be linear with frequency.response func-
tion R(s). This fiiter will be assumed tc have zero responae st audio frequencies and -
at the harmonics of the carrier, The detector is another second-degree device, with
output y in terms of input x given by

yodx+da? {64}
The audio-frequency channel will be asaumed to be linear with frequency-response func.
tion A{s), and the respunse of this channel will be assumed to be zero «i zero frequency
and ut radio frequenciee.
The fundamental cascade combination formula is then applied three timen in succes.
8100 10 obtain the system transforms of the coroplete channel: ¢

«
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Q0
Q,l) = mﬁ;Mﬂ_N"
Qz(u‘,lz) L] mzd.A(ll oaz) R(.) +¢z) + mfdzA(-l 013) R('l’ R(ozl
Q)(lt. 5, ‘l) L] mlmzdle' + lz + l,) R(-l) R(-z 0.,)

* mlmz“'l ‘o, o,) R(-l 0-2) Ru’)
Qlsy,.. AR "‘:dzM‘n 1 -zol’bs‘)mll +12)R(3,0|‘) {65)

and all further system transf_-ms are zero, However, Ql and the first term of Qz are
tero, since we have assumed that A(s) R{s) =0, and the two terma of Q, can be combined
by permuting the variabjes in one of them, The only nonzero system transforms then
become

Q,(s,,8;) » mfdzAlll +8,)Rin ) le,)

Qs(ll, .5, 33) L] 2:1-\‘11\2¢1‘,.A(ol e, 03) R(ll) R(-z ¢o3)

-
Q‘(ll, ‘e .,c‘) - mdeM'l ¢¢z¢-3f|‘) R(ll nz)Ru,’o‘) (66)

These transforms charar.ierize the complete channel ar a nonlinear analytic system,

Now suppone that the input consists of a number of sinusoids, one st the carrier
(radio) frequency, with exponential componenis at 8 = tjur, and the rest at audio fre.
yuencies, & » tju ., tjw ., and so forth, Then no output wi'l be obtained from Qz.
since the only firequencies in the input for which R(s) is nonzero < re the positive and
negative carricr frequencies, whose sum is either zero or iwice the carrier frequeacy,
for both of which A(l| + lz) ie tero,

A nonzero output is obtained from Q3 only when s, is a carrier frequency and 324 []
is the sum of a carrier and an audio component, and the two carrier frequencies are of
opposite sign; the sum frequency will then be the audiv frequency. (Fnr 2ach audio coma
ponent there will be four terms: s, either plus or munus, and w: 'h either 4, ©f Ky a8
the audio component.) Therefore Q, gives the demndulated audio vutput, wiich is pro-
portional to the audio input, the square of the carrier-frequency input, the audio-
frequency gair, the square of the radiofrequency gain, the linear part of the modulator,
the sccond-degree part of the modulator, and the second-degree part of the datectus.

Q‘ gives a nonzero output only if both 8, + 8

3

1 19 and 8,¢s, are sums of sudio- and carrier-
frequency components, and the sum (requency is the sum of the two audio frequencies.
Hence Q‘ gives the harmonic and intermodulation distortion components in the output,

These particular resuits cuvld also have becn oblained by more conventional methods
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i by sssauming the input and then calculating the resulting signals 3t every poimt in the : '
§ aystemn. What we have done here is (o solve the system as a system before specifying <
‘:' what the input is to be, - B
1 3
1
: 4.5 ANALYTIC FEEDBACK LCOPS .‘,; {
4 2 :
} An electrical newwork consista of a number of elements counnecled .y wires, 1
{ In many cases, the elements ar® all two.terminal elements, and each etement ;
} can be described as a system with one inpul and one output, by specifying '
s either the voltage in terms of the current or the current in terms of the volt. ’
age. The interconnections are expreased in terma of Kirchhoff's laws, which 2 !
equate 10 zero either a sum of voltages or a sum of currenis. These rela. ;
) tions can be expressed by a block diagram or signal-flow graph that contains -
two kinds of components: sysiems and summing points, It appears, therefore, :
; that a theory of nonlinear newwork analyeis might be built up by using only ¢
’ two of the three kinds of simple combination described in eectivn 4.3, namely, :
sums and cascade combinations.
Such a theory has not yet been developed. In terms of the relation betwesn
systems and (unctione, as developed in Section 1, this theory would be essen. v
K Ually a theory of implicit systers, We might hope for an exiension to sys- :
. tem theory of the fundamental theorem
g [cf. Rudin (i5)] om implicit functions, L
2 * : For the parpc~es of suggesing the kind .
i of results thai such a theory might offer, : )
} —Y-Q———‘ and of giving a special case with ite
2 : cwn useful applicationg, the solution of
} Fig. 3. Simple fercback Joop. additive feedback loope with analytic ; .
4 components i8 gresented in this sectjon, 2 )
:' Another special case, the inverase of i
! an analytic system, will be discussed
. in section 4.7. ’f
’ ! Consider the simple feedback loop ; r]
? illustrated in Fig. 3. This is not such M /
? <' l 8 special case (as {t seems) because, ; ‘
5 as Fig. 4 shows. s genersl feedback i /
O, - s loop can be reduced 1o two cascade }
! problems and 1o a feedback problem f
4 4 of the simple form. 1
- ; Assume that this simple 100p sys- i
Fig. 4. Reduction of general lovp to tem 15 cquivalent to & system K. Lat (
simple form, the input be [, and the oulput g = Kif); ;
H t
i !
- n .
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” o ‘ ‘
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then
KD = € « HIK) : 1)

or, as a system equatiun with the nolation of section 4. 3,
E=sl*HeK (s}

where | designates the identity system,

Now suppose that H is an analytic system. We assume that K is amalytic, and
obtain a formal solution — we shall determine later whether K is, in fact, analytic., We
shall consider that Ho s 0, since a nonzero Ho represents merely a constant added to
the input, and we do not have to consider this as part of the feedback loop. Then, for
Ko‘ we obtain

2 3
Ky = H,{0) K+ 11,(€,0) K ¢ H,(0,0,0) K_ ¢ ... (69)

This equation may have ‘nany solutions, but il will alwaya have the solutiaa Ko =0, We
assume, 28 iB often e case in praclice, that we nre Jooking for the solution thot gives
tero output for zero input, and heace we accept the solution Ko = 0. This allows us to
use the simplified form of the cascade equations which occurs when the constant tert..s
of both components are zero,

The next equation that we cbtain is

K {s) o 1 + Hi(s) K (o) (70}
from which we determine that
1
K,(s) = mT(;) )

This is the result that would be obtained {rom an approximate linear analysis. Next we
oblain

KZ“I’ IZ) = Hl(-l "2) Kz(ll,lz) + HZ('I"Z) KI“I)KI('Z) (12)

and, since K| has aiready been computed, this equation can be solved for Kz. and we
have

e 9
K,(s,,8,) el Ly an
3 ,8,)=
271 T2 T UTH (0 v e 000 - H (s )T - H (s, ’
This procedure can be continued indefinitely, since all the formules for higher order "

systerms transforms Kn, as derived directly from the cascade formuls, will contsin
Kn only in one term on the right-hand side, Furthermore, since Kn“l' . ""n, appears
on the right, multiplied only by H‘(tl LI 'n” the oniy factors in the depominator
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Fig. 5. Modification of loop for proof of analyticity,

of the resulting expression for Kn will be cf the furm 1 - ll‘, with various arguments.

The forta of the solution suggests that the stability of the resultant system K, and
its analyucity as well, might be determined solely {rom the linear approrimation, This
i8 a conclusion that hag been reached, in a scmewhat different context, by Poincaré
and Liapounoff, and jt will now be shown that it is egsentially true also in this case,

We begin by separating the syste'n H into two parts, a linear part H', and a part
H" containing no linear term, as shown in Fig, 5. We then solve the linear part of the
feedback locp separately, and oblain a loop with a forward path through the linear sys-
tem K' which is equal to the lineur part of K, and a return path through H*. The solu.
tion of this loop 18 the same as the solutiun just oblained; howcver, we ure not interested
now in the formal solution for the system transforms, hut rather in obtaining bounds on
the bound function and the radius of convergence.

For this modified )r- e obtain, for an arbitrary input ¢,

K(N = K'(f + H (K1) 174)

or, 1n terms of systems, we have

KeK' o+l LR (1%)
Since K' is linear, by supespusition Eq. 74 becomes
KK ¢+K' e H* e K (16)
The known system K' @ {{" will now be designated by Q. Then
39
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Therefore,
By (x) € By (x) ¢ BQ(BK(!”

<k, Ix ¢ BBy (x)) L]

The cunstant and linear terms of the power-series expansioa of UQ are both zero, so ) .
that this equation can be used directly to determine, one at a ume, upper bounds on the
coeflficients of the power-scrics expansion of BK; that i1s, bounds on the norms of the

system [unctlions "‘n' This procedure is a solution, in power-series form, of

ys 'kllx IS Bq(yl (79)

and y(x) 18 an upper bound on BK(x).

A soluuon can be obtained without using power series bv solving this equauon fer s s
in lerms of y and graphing the result, as follows ! .
x = (- B/ Ik} (80) :

1

As : increascs from zero, x increases [rom zero, reaches a maximum, and thereafller
decreases, uniess the radius of convergence of BQ (which is equal to ﬂ.ﬂ) is s0 swmall ‘
that the curve comes 1o an end before the maximum value is reached. EqQuation 80 gives I
x as an analytic function of y, and investigation of the analytic cootinuation of this func«
uon 1n the complex plane \ndicates that its inverse is analytic in a circle about the origin
with radius equal to the maximum value o1 x,

Heuce the inverse of this functiion ~ which can be obtained immediately (rom the
graph — 18 the desired upper bound on the bound function BK' The maximum value of
%, which will vccur either at the end of the curve (as determined by RH\ or at the turing
poiny, 18 a lower bound or. RK' Thus the resultant system K can be proved analytic if
lkll custs; that is, if the linear approximate solution of the feedback loop has an abso-
lutely integrable impulse response,

Note that the impulse response can be absolutely integrable only if the linear

-~ g"""“ﬂ-:ﬂn}ﬂlﬁw

approximation docs not include a differential operator and has only damped tran-
sients,  Stability 18 therefore a necessary, but not quite su’ficient, conditica for
analyticity.

4.6 EXAMPLE OF FEEDBACK SOLUTION

Section 4, S consututed essentially a proof of the existence of the solution 10 certain
prublems and an outline of the mewnod for their solution, In this section *he method is
spplied 10 a sprcific probiem, with two changes in the method, First, the (eedback loop
18 sotved without {irst reducirg 1t to the simple form treated in secion 4.5, Second,
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the result will b proved analytic in spite of the fact that one of ita components s not
aralytc.,

The system to be analyzed is the detector circuit of Fig., 6a, which consiats of &
diods and a capacitor. Since the diode is not peifect, no resistor is needed in parallel
with the capacitor, The dinde is assumed to have the currentevoltage relation

1= A - . (81)

and the capacitor has capacitance C.

The relations governing the operation of the circuit can be expressed in the block
diagram of Fig, 6b. The system [ is a no-memory system representing the diode
with vaitage input and current output; Do a 0and

D (s,,....8) s AB"/n! . (82)

for ali cther n. The syatem C is lineur, representing the capacitor with current input
and voltage output; C,(s) = 1/Ce. The system C is not analytic,

Fig. 6. Detector circuit. {(a) Circutt diagram.
{L) Blown diagram, (~) Synthesis of the
approximate soluton,
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. Letung H+ C ¢ D, by a sample application of the cascadizg formaia, we oduln
H s0and .
v
AB®
"n“l""’.n, Im %)

Now, if we represent ihe euntire detector system by K, we ohtain the system equation
frm the block diagram.

K=sls (- (84)

This 18 not of the same form as Eq. 68, which was ireated in secuon 4.5, but the same
method of solution is applicable. Fur the first few system transforms, we cbtain

Ko =0
K, (s) 'ETATB'Aﬁ (85)

ABzczs‘oz
Kpls).8,) = 3(C(s, +8,) + ABHCs, +AB)(Cs, + AB)

and further system transforms can be calculated in succession,

The system transform K, can be recognized as having the form chamcteristic of a
no-meimory vysiem preceded and followed by linear gystems, and the secomd.degree
approxiination to K can thus be synthesized in the form of Fig. 6c {rom the transforms
given in Eqs. 85,

The solution given is only a formal one, in the sense that it will be valid i{ K is
analytic, but we do not yet know whether it is analytic. To show anslytaaty, we view
the circuit from a different point of view. We consider the system wnth input €, as
Lefore, but with v as the output, and cals this system P. Since v » €, e, we find that
Ps]l-K. Therefure, K is analytic if and only if P is, and these two systems have
the same radius of convergence, Furthermore, the norms cf their sysxem functions
will be the same, except for the first, 80 that BP can be used to determae bounds on
the error that results from using only a fuinite number of terms of the caxgression for K.

The block diagram for [ has the tunple form of the loop discusse? iz section 4. 5.
Swnce C 18 linear, we find H* and {{® by separating out the linesr pariof D. For the
linear approximation, we obian

EEE Y RS

i P T (86)
T~ t {rotn which we determine that )
'
R py(7) = &(7) - (AB/C) o« AB/C)r —
|
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Procecding as in the revious aection,

we find that

Q=P ¢ L ¢ D" and when we caucade P' and C we sce that the troublesome 8 in ihe
*denomunator of C, Is canceled by the numerator of P, so that Q is analvtic. From
the {ormula for the upper tound on the bound fuaction of a cascade combination, we find

L e . ——— iy P Wa -

2ey-eBY -1y

Bl B* -1 - Bai/B -

(88)

The bournd y{2) on the bound funclion Bp(x) is therelore determined by

(89)

The maximum \alue of x, which 18 a lower bound on Ry, s R, 18 (log2 ~ 1/2)/B 1 0.193/B,

Thre graphical construction of the upper bound on Bp{x) 18 shown in Fig. 7,
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lig. 7. Bcand oa the bound function of the detector system,

This result ia somewhat disappointing, in thay we would expect a much larger, in

fact an infinite, radius of canvergence. The radius of convergence may tn fact be infi«
nite, but the method we have used {# inhcrently incapable of indicating an infinite radius

of convergencs.

it is » conservative method, based essentially on the assumption that

the feeddack through the nunlinear terms, which we are unabie to compu:e in general

escept 1o determine a bound on 1te magnitude, is exerting the grestest possibie effort

- to make e system unstabdble,

Further rescarch might ruvenl less conservative tests

for analyticity. At any rate, we have proved that the radius of convergence is greater
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than sero, and have therefors established some validity for the result of the aystem cal-
culation,

4.7 THE INJERSE OF AN ANALYTIC SYSTEM

If H is 8 nonlinear system, which produces for every input { in a certain classa
corresponding output g = [j{f), the inverse 5" of  is a system which, for every input
g. produces an output f such that g = H(f). Then the cascade combination o 1~ is
the identity system ],

This dues not imply, in general, that !" o H 2 |, because if i can produce the same
output fur iwo different inputs, u-l cannat tell which of theee inputs actually occurred.
Generally, we shall say that }{ has a true inverse only if

ge ' en eyl 190)

The inverse of a physically realizable system is not necessarily physically realis-
able, 7This is known in the theory of linear systems; the inverse of a simple delay uys-
tem would be a simple antizipator,

Within these limitations. however, there are cases in which system inversion is
importiant. For example, a two-terminal network might be designated as a system with
current input and voltage output, and we inight want to determine its expression with
voltage input and current output. Or, we may have a communication channel in which
the effect of some system csmponent i 10 be canceled by introducing another component
in cascade,

The problem of determining the inverse of an analytic system ls quite aimilar to the
feedback problem, Designating the inverse of I§ by K, we have the syttem equation
He K »]. A in the feedbuck nroblem, an easy solution is possidble only if H, =0, and
if we then choose, out of the many poesible solutions for Ko’ the solution K = 0, which
will always exist. We then cbtain

Kl“) . l/Hl(l)

'"2“:' 'z) Kl“l) Kl(iz)
H s, +3,)

Kz(ll, sz) -

-Hz(.l' .2,

» 91
"x“g"a’“x(':'“x":) on

and further system transforms can be calculated successively, It can be verified that
these terms also satisty the equation K ¢ H s |, and it may be surinised that this cqua.
tiow 18 satisfied in general, so that K is a true inverse of H, but a general proof has
not becn {cuna,

" '.e procedure for proving K anatytic by determining bounds on Bx(x) and RK is
simiar to the procedure for feedback problems. We separate | into a linear part H°*
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and a part H® with no linear term. Then

@ +HY e K=l {92)

The tnverse of H' iz K!, the linear approximation to K. Cascading each side of Eq. 92
with K', we have

KeH ¢ W) Ko K
KeH sKkeKoHU e Kapt
KsK ~Kol"*»K (93)

and then proceed as in section 4, 5.

We conclude that if the linear approximation to the inverse of an analytic system has
an absolutely integrable impulee respunse, then the inverse {3 analytic.

The same argumcnt showes also that the inverae 15 phygically realizable if its lincar
approximation is physically realitable, We have in fact ocbtained K in the form shown
in Fig. 5, which, if i and K' are physically rcalizanle, uescribes a physical realiza.

tion of K in terms of physically realizable cumponents. ‘ e
4.3 MEASUREMENT OF NONLINEAR SYSTEMS
It has been shown that any 8y stem that is continuous(R) can hi¢ approximated in ans.- -

1ytic form, wath error thut is uniformty smaller than any precassigned tvierance, The
proof was purely an existence proof that gave no indication of a method for oblaiwning

an approximation, Although several methods can be used to obtain analytic approxima.
tions to given systems, none of these methods can be used in guch a way that a given
tolerance will be guaranteed,

The problem: is similar to that of determining pulynomial approzimations to a real
funcuon, Three methods are available; determination of a polynomial that equals the
given function at selected points, as in the method of {inite dilferences; expansion in a
Taylor series; and expansgion in a series of orthogunal polynomials, All these methods
can be generalized and used for systems The first will be described in this section,
the second in the section 4.9, and the third will be discuesed in Section V,

Consider the time.invariant system 1] a6 represented by the functional h, which
gives the value of the output at any time in terms of the past of the input, The finite
dilfference of h with respect to the real function ¢ is defined as

A’h(\" = h{u ¢ ¢) - hlu) (94)

This defines Abb as a functional, since it specifies a real number for every real
function u for which h{u) and hiu + ¢} exist. We can then consider the system A’lj.
which is represented by the functional A’b, a® the finite diffcrence of H with

respect to ¢,
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Finite differcences can be taken successively, with respect to the same or Jdifferent
¢-functions:

Aﬁ‘zb(u) = Aezéelh(u) ® a.‘_q(uuz) - A’.Q(u)

=Dhlute, +a,) -hiuee)-huse,) + hiv)

A’l‘z.)n(u, v ufue " 4 ’z + .3’

“hlus e, +e,) ~hlurg, +e,) -hluse,+e,y)
+hlus 4)) ¢+ hlusre,) + hluee,y)
= hlu) (95)

The general foria for finite viffireces of any order can be inferred. These forras can
be used for the experimental det:rmination of finite differences,

If H is an analytic eystem, its firite differecnces will also be analytic, A straighte
forward calculation, in which terms of like degree are collccted, gives the system
functions of the first iinite difference, Il we zssume that the system functions hn are
symmetric, for the first few terma:

L
84, -j: hy(r) o) dv *j:f_‘ hylr ), v 8r)) olry) dryde, 4 o

©
A’h'(r) - 2[1 hz(v, vz) “Tz) dfz

w pa )
. Sf f h,(v, 'z,f’) Q(v:) 0(12) °'zd'; ¢ ..

—0 ¥~
, e
Shalrergd # 3] nylrnr g dry e, 196)

Nule that ho dots not appear anywhere in these equstions, and nyn. in general, hn
appears only in A¢hn-|' Ath-Z' and so forth, Therefore, {f f| is a 8) ..em of degree N,
the N'™ finite difference will involve only hy, and this will appear only in the constant
term, so that the N'! finite difference is o constant-output system:

-
a g(u)-le ...fo (T ,0vee,vp) ﬁ o lv)dr,...dy 97)
. R N L el dryeeedoy

~s0
Thu~ an experimental determinationof &, ‘nm {for all possible combliations

of ,ea. " ' ctions LIYERREE Y is sufficient to determine the highest vrder system function
hN' When this has been determuined, the undetermined part of the system is a sysiem
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of degree N = 1, and therelore all of the system function. :.r ve determined,

In fact, it is not necessary to use combinations of all poagible ¢-funciions, 1If, for
example, A’l- . &xb(m is delermined for all poasible combinations of functions
chosen from some complete normal orthogonal sequence, then we obtain the coeflicients
of an expansion of h_\. in.a series of producte of these functions,

If we use impulses as the ¢-functions, designating by b‘ a unit impulse occurring at
v+ = x, then we have

ab, ... G‘NQ(O) L LRV L IPRTRPS P8 (98)
i
If we use step funciions, designaung by ;‘(v) the value of 3 function that hag value
gero for ¢+ > x, and value 1 for v £ x, then we have

Mo |
Sy o g MOV RN ) AT o e eea Ty Yy (99)
* -» —o

and hy can be deternum oy differentiating th's -

If we use exponentians, with the notation e.(n se . thea

Ae.‘...e‘Nb(O)a!'H “N(')"""N) {100)

An equivalent result can be obtained by using cinueolds instead of exponentiala,

If we have a system that is not analytlic w.!i. .. :.'e Jegree, we can assume that it is
approximable by an analvtic system of degree N and apply the procedure suggesticd, We
then derive an approximats analy.e system that gives the sawmne output as the given &,8-
tomn for the inputs that were used to determine the finjte diffe-encen,

The response of a linear system to any input can be determined if we know its
response to a unit impalie, tu a unit step, o1 to all of the ginusoids of a given amplitude,
We now have reason to believe that this can be extenderd to nonlinear systema in the fol-
lowing way. The response of a continuous nonlinear system to any input can be deter.
muned, at least apprommately, if we know its respunse to all posgible combinations of
unit impuises, to all possible combinations of unjt sieps, or to all possibie combinations
of sinuscids of all frequencier with a given amplitude,

4.9 TAYLOR-SERIES EXPANSIONS OF ANALYTIC SYSTEMS

Through the theory of functior 8 of a real or a complex variable we have come to
associate analyticity with differe..ciability, 88 well as with represeatation in & power
series. The differenuation of an analytic syetem is not only of mathematical interest
(cf. Hule (H)], but alsc useful in the determinauon of the system {unctions of an ana.
1ytic systrm by a Taylor-series method,

«
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As in vecior analysis, for example, when the direction”) derivative of a scalar func-
tinn of position depends upun the choice of a direction in space, an analytic system does
not have a unique derivative. We shall define the derivative of an analytic system in
terms uf the functional that represents it, and we shall define it an essentially a direc.
tional derivative,

The derivative of the functional h with respect to tae rcal function ¢ ir deflined as
the limit of a finite difference quotient:

" blu + €9) - hhiu)
_‘(u) - :Lr: —

(rot)

This derivative b. is also a functional. The time-invariant system thut it defines will
be called ﬂ‘, the derivative of H with respcct to ¢. We can now dilferentiate E’ with
respect to a function ¢, and obtain the second derivative b“, and successive derivatives
can be defined ad infinitum,

If H is analytic, and its system finctions are assumed to be symmelric, then a
straightforward calculation of the derivative shows that tne derivative is analytic, with
system functions

«
Aw 102
h’.n('l' ' "'n) * ("”)f_" hnﬂhl‘ * ""nn’ ¢”ﬂu\ Tones tio2

If ¢ is in PBI(M), for any M {that is not necegsarily legs than RH). then

|Ih"n|| <ty Mir ) (103)

from which it follows that the bound function of _I_I' 18 no greater than M times the deriv-
ative of the bound function of H, and ite radius of convergence 18 not less than Ry-

1t follows from the assumed symmetry of the system functions hn that the higher
order derivatives with respect to different functions are wndependent of the order of dil-
ferentiation. Since, however, a system 18 not changed by making its system functions
symmelric, this conciusion is true whether the derivalive i€ calculated from symmetric
or unsymmetric system functions,

Applying the .o1nuia (Eq, 102) for the derjvative n times, we find that the constant

th

term of the n derivative is

© L] ﬁ 4
h -n!f ...f hi{r.....7) e {r)de .. .dv {104)
Ql...Qq,o ~ . " 1 n e [ ] n

Thus, hn can be determined fram the vaiues, for u = 0, of the o derivatives of . The
same comment made :n the discussion of finite differunces applies here also. The
¢-functions for which tac derivatives must be determined need not be all possible func -
tions, and we can use in.pulses, vrep funclions, or sinugords, as in section 4.8. This
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result can be used as the basis of a Taylor.sernir. method for the measurement of mon-

linear systems. It is not hard to show vt

) s lima oy (108)
* Ql....n.b 0 COeu.(’.

. so that, Tor the application of the Taylor-series method, we can calculate the hugter
! order differences as limits of inte-diflference quotients, computed for v = 0, msrend
of hy cumputing successive derivauves for all u.

the statement that the symmetric forms of the ) stemn funchions arc uwaique.
The Taylor-series method can be used ouly for analytic 8ystcms, since it derives

The expression for the system functions in terms of derivatives provades a proof of

the system functions from tse small-signal respoose of the system, and therefore deter-

mines the large-signa) response from tre smail-sigral response by cxtrapolatica. Its

advantage over the method of finite differences 13 that it is not restricted to systemws of

finite degree. As an experumentsl methnd, it has the disadvantage that it invo'ves Limi
of vbserved values, so that many observalions may L= recessary tu obtain e b l:may
while the method nf finite differeaces Tequines only the observation of ou’put valves for
specific inputs,

4.10 SYNTHESIS OF ANALYTIC SYSTEMS

Two methods will be mentioned for the synihesis of sysiems from therwr analytic
representations, The first, obwmiously applical’': only in special cases, coruusts in
recognizing already familiar forms ir the s~ .cm {unctions. It is tllustrated in sec.

18

tuon 4.6, in whicn the second-degree approxim..on to the solution of 2 feedback groblen.

was synthesized in cascade fcem. Continsed Anvestigation of the properiies and appli-
cations of analytic representations can be expected to make this method applicable to
an ever-widening class of systems.

The second method is based on the fact that if

n
hn‘fln tves 7n) s }31 "‘7‘) P . {104

L

then this term of the aystem can be synthesized as a product of linear systems; if .n i»
& sum of such producls, then it can be synthesized as 8 sum of products of linear sys-

temns, Such a product expression can be cblained by expanding hn W & ser:es of products

of orthogonal functions. However, no iavestigation has been made for determimung the
conditions under which this method ran be expected (0 yirld arbitrasrily sowuii error.

Neither these methods nor the methods proposed oy Wiener and Bose can be consid-
ered satislactory methuds of synthesis. All of these methods are capable of the following

absurdity: we are given a black box, e examine it in the laburatory Ly apuiyiag inputs
and observing the outpule, we assemble several hundred doilars® worth of equpment ic

approximate its characterist:ca, and then open the box and and that it contarns & handful
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of components, the total cost of which 18 one dollar. An example of this is found in the

detector circuit analyzed in section 4,6, By no xnown method of synthesis of nonlinear \
systems can we derive, {rom any expression of the ouiput of this detecto™ in terms of ‘*
A8 input, i synthesis in the form in which the circuil was oriﬂnmy'giv'en. B

A muthod of synihesis that meets the criteria umplied by the foregony discussion is ‘

a practical necessity, The discovesy ot sucha method is one of tie great unsolved prov. .
lems of the theory of nonlinear systems, ;




I

V. ORTHOGONAL SYSTEMS

5.1 MEASURE AND INTEGRAL

The purpose of this section is to show, in a general wuy. u-.tduupuuuolrnl
functions in senies of orthogonal facuons can be extersied to wmducate 2 method for
expanding nonlinear systems 1n serves of ortaogonal mystems, Sewe the exvansoa of
real funcuons oy tus method Involves the proceas of compulicsg e integral of & real
function, the applicatton of the method to systems will requure wmtegration of systems,
or at leas? .oisrrauon of fUictionals. The ydea of integraucm ssast therefore be extended
from real lax . s to systems or fucuonals.

For th.: = - se it is appropriate o indicate here sc.me of tve fundamental deas of
Integration, in tais section the relaion between integration Jad measure theory will be
roughly outlined, and it will be 1 hosn that U theury of probawadity plays an iraportant
PaTt N he Anlsgrelien ©f Simcinmztz,

We begin with the integration of real funclions, Suppose we Bave a real faxcuon f,
and want to integrate it cver the 1ntervs! {A, B), The integral taat we ohtain is defined

"in geometric terms as the net area !xtween the x.axis, the grapm of y = f(x), axd the

tnes x = A, x = B, This area 1s oblaned, in prunciple, as e Lmit ¢i a sc. @~~~ of
approximations, each approximativa being oblained 5y d:«dixg o afca 110 L

of étrips and estumatung the widith and ure length of cach i p. lage .. YIS )
are parallel o the y-azis,
In the classical deflinition of the Riemann integral . =ripw are constructed b

diwviding the interval {A, B) 1nto a large aumber of s:nal! safc=tervals and taking v -
subinterval as deficurg the wadth of & strip. The length of e b strip 18 estimated as
some ‘alue ass:. ned hv {i.) on the subinterval that defures s udth. The integral is
estimaled as the § - Uhve areas of the strips, and the waregral is d2iuned as the Limit
of these estamates .-, «e€ interval (A, B) is divided 1nwo smaller and amaller subintervals,
If { is continuous, the range over wh.ch {{x) varies oo each sbeaterval becames arhi.
trarily small as the sudintervals are made small, and the esmate of the length of the
slTip becomes better and better, so that the Limut that defines the witegral exasta, But

il { 13 not continuous,. f{x) may contnue to vary mndely no tmmatter how small the subin.
terval is made, and the amtegral thus defined will not exis:.

To get around tus difficulty, we jedefine the stnps \n such a way that flx) can not
vary widely., MWe duvnide the y-axis, wrsiead of the x-axis, viio subiatervals, oo that the
length of each sirip can be estimated with error that is less tmaa the width of the gubin-
terval, and define the width of the strip as the total iength of te set of all x Jor which
{{x) is in the subinterval., If { 15 canunwous, thif set af x's u:'. consist of a callection
of dizcrete intervals, and the total fsngth of tus set 18 sunpy toe sum of the lengths of
these intervaly. Butif { is not continuous, this set may oot e a coilection of intervals,
and we are (a.ed with the probiem of defining the total lengk of a set of aunbers the: I8
not an interval and cannot be decomposed in10 antervala,
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The Lebesgue theory of measure, by providung a1 least a partial solution 10 this prob-
lem, achicves the desired generalization of integra-ion. Thus theory shows how we can
assign, to vack of a large collection of sets called measurable sets, & number called its
measure, 80 that the measure of a set has the properiies that we associate with the idea
of tolal length: the me¢asure of a set i» always non.negative, and the measure of th.o
unio: of a finite or countable collection of nonoverlapging sets 10 the sum of the measures
ol the component seta, In pariicular, the measure called Leuesgue measure has the
property that the Lebesgue measure of an interval is the same as {ts length, By means
of Lebesgue measure we can proceed to define integration for many functions tha: are
not continvous: for each subinterval of the range, we multiply the measure of the core»
responding subset of the dotnain by some value ir the subinterval of the range, take the
suin of these preducts as un estimate of the integral, and define the limit of these esti-
mates, as the subinicrvals are made s:naller, as the Lebesgue integral of the function,

The point in which we are interested here i not that the Lebesgue integral (a defined
for functions whose Hiemann integral is not defined, but rau.er that the theory of inte.
gration in terms of mecasure can be used to define integrals of functions that sre not real
functions, Consiier any real-valued function, whose domain may be a set of any kind of
objucts. Divide the range cf the [unction into subintervale, and fol each subinterval con-
sider the subset of the domain on which 1ae value of the function lies in that subinterval,
If, to «very such subset of the domain, we can assign a number that we can call ite meas-
ure, then we can proceed, just as in th: case of the Lebeague integral, to define the inte-
gral of the functuon.

The prollem now is to dej.ne a measur 1n a set of real functions, and the solution
comes from the theory of prbability, A probabilily ensemble ie a set ¢ objects, in
which we aesign to every subset — or at least to certain subsets — a nuinder called the
probability of thut subset, The probability of the whole ensemble is unity; the probability
of every subset i noii-negutive, and does not exceed vnity, and, in fact. probability has
al] the properties that arc required of a messure,

Therefore, if we have a real-valued function whose domain is a probabllity snscnible,
we can define an integral of that function. We divide the range of the function Lnto sub.
intervals, and for each subinterval we multiply some value in that subinierval by the
probabiilty ihat the value of the funcuon will lie in that subinterval. We add these prod-
ucts ~vcr all subintervals t0 obtajn an estiniate of the integral, It will be seen that by
this process we have obtained an estimaie of the ensemble average, or expectation, of
the value of the function, An integral, defined in terms of probability measure, is simply
an ensemble averaye, ’ . . .

To define the integral of a functicnal, all we need is an ensemble of real funciions u.
The integral of the functional is then the ensemble average of the value of the functional
for this ensemble of y, The integral of a time.invaziant system can then be defined if
we have a slationary ensemble of wputs {. The stationariness of the enaemble implies
that the ensc:rble of funciinneg v ufv) e {(t=r),” will be the same for every t, and the
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integral of th? sysiem {p defined as the integral, for this ensemble of u, of the funcuoeal
tuat represents it; that is, the ensembie average of the value of the cutput of the system,
in mary pracucal situations, the stat:anary ensemble of inf ats is prescribed by the appli-
csuon for which the system is being considered,

5.2 EXPANSIONS IN ORTHOGONAL SYSTEMS

Every t © ~2.invariant system can be represented by a funcuonal, and every statiomary
ensembie of functions [ correspoads to some ensembie of functions u, which is the same
as the ensemble of functions u, for any t. Therefore, we shall do all our mathematical
work 18 terms of functionals; and the resul's can be translated immediately n terms of
systemx.s by the fact that the average of the value of & functional wili equal the average of
the valoe of the output of the system that it represents.

Suppose we have available in the laboratory a bank of nonlinear time-invarisnt sys.
terns Qi‘ and suppose we 2ls80o have an unknown me.invariant system }j that is to be
spproxaumated 38 a linear combinaton of the systen 2 Q‘ Represenuing these as func-
tionals, se »lall determine real nuxvers <y with the property that the functional

N
|_;--Z XN (o7)
=l

is sn approximation to h. The error of approximation will be the output of the aystem
E = § - Be, represented by the functional

N
£ob-been-) cg (on)
tel

We ahall obiain an approximate representation of Hf in terms of the systems Q.
This representation may bs useful 1n two distinct ways. U the systems Q‘ are easy to
constract, then we have a way of cocstructing H or an approximation to it, If tbe sys-
ter.s g‘ bave convenient mathemaucsl representations, we obtain a convenient mathe-
rmatical representation of H.

Suppose that the criterion of approximation is that the mean.sjusre value of the
error, for s particular stationary ecsemble of inputs, be as small as possible. We shall
designate the mean or expectation of the value of a functiona) by an irtegral sign, to
show that our mathematics is anslogous to the mathematics of real functions. Then we
must determiue the numbers ¢, 8 that

[« fm-pr

$3

e  apa—

PP N B




¢
ST Py iy g -

PRI

- e ——— > — s " —

Y] - . o .. a. c - —— e o

18 a minimum, At the minimum valye, e parual decivatives

z';fsz"_‘fh&”‘iﬁfs& | L

. =2 f % . ) 7 (110)
must all be gero. The condition for cirimum mean-square error is therefore that, for
every k,

f [ i (i1})

It is possible 1o implement thic scheme wi the laboratery. The output of each of the

systems g‘ is passed through an adjuswdle.gain amp'ifier, which provides for the adjust.

ment of ey and the outputs of the.se axplifiers are added to construct the system Hes,
The output of He iz subiracied from the outpul of H to obtain the error system E. Now
we must 1aultiply the output of each ui e sysiems Q, by the cutput of E and obtain the
ensemble average of this product. U1 we ensemble of inpite is (rgodic, this ensemble
average will equal a time average, a (a8 wi.sncr has suggested) we might combine the
mullplicatian with the estimation of the tume average by using an overdamped electro-
dynamorceter., Then we have a bank of N meters, and we must adjust the N gain con.
trols sc that each meter is made to read zero.

In the general case this may be a wroublesome procedure, becauge the adjustment of
a single jmin control may change i readings of all the meters. However, if the sys.
tems Q1 are such that

f 1, H {ak
= (1)
W% 0, if fek
then
fﬁ'f”&"t (113
20 that the reading of the km meter is alfected only by the km gain control, and the
appropriate adjustment can be made guite simnply, Furthermore, if the meters and the

gain controls are appropriately calibrated, wo can perform the adjustment by setting
each gain control to tero, repding cach meter, and then setting

°t'f3‘!a {114)

which will give the desired approxamation ummesdiately.
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The condition imposed oa the systems Q‘ can be expressed in a terminoclogy that ie
conventional for the analogous situation in tww theory of resl functions. We shall say
that the sysiems 'y, are all normalized, and that all are orthogonal 10 each othar. The
set of systems will be calied an orthonormal, or normal orthogonu), set, The tpproxi. 3
mation oblained by this procedure will be called an expansion in orthogonal systems, !
Since these conditions were imposed in connec:lon with a particular ensemble of inputs,
we shall opeak of systems rormal and orihogonal with respect 1o & particular input '
ensemble,

If the systems g‘, as given, are not normal and orthogonal with respect to the par-
ticular input ensemble that we intend to use, we can cons:c.ct, by meens of &8 well-known
procedure, & set of linear combinations of them that are normal and orthogonal. This
procedure can be des~ribded by supposing that we have already construcied a set of A
normal and orthogonal systems, and we have a system Q“ .1 that is not normal or orthog-
onal to these n systems, We are to construct a linear combination of these n ¢ 1 sys-
temy which is normal and orthogonal to the first n. We do this by constructing, with
the use of the first n systems, a minimum-mean.square-«rror approximation to Qnﬂ'
The system whose ouiput 38 the error of Wiis appruximaiicas s orthogrnal to the first n
systems, and if it is nut equivaient to zero, then we can normalize §1 by multiplying it
by an appropriate constant. (I it is equivalent to zero, then every lincur combiration
of the n ¢+ | systems can be also obtained with the {irst n, and the additicnal system Q““
is of no us " to un.)

in genera’, . .n. all we need to odtain minimum .mean-square-error spproximations
is 3 bank of nos.iuear systems, some adjustabie-gain amplifiers, and some product-

average meters. The given systems can be urthogonalized and ran then be used to obtain
orthogonal expansions of azy given system.

How close can these approximations be made ? Can the riean.square error of approx.
imatlon be made arbitrarily small by using s large enough bank of nonlinear systems Q‘ ?
For systems that are contisuous(R}, coasidered only for ensemblcs of inputs that are
bounded{R), we have a ready answer, We begin with & sequence of linear systems K.‘.
with impulse response luncuons k‘, such that there §8 no function u not equivalent to
zerv for which

- & . ot e 1B i Bt sk~ A Wt ok b

Fem = e

AP e d e

«
.fo u{v) k‘(v) dr =0 {119)

P
-
H
t
i

tor all {. (The sequence uf systems whose tmpulse responses are the Laguerre {uiic-
tjons has this property.) Then we form a sequence of nontine: ¢ eysiems consisting of

8 constant.output system, these linesr systemnss, and sl prot .7 of combinations of
these systema. The set of ali linear combinations of thesc .. ' +ar systems is an
rlgebra that separates points (cf. section 2.3), and therefore any sysiem that is contin.
unue(R) can be spproximated arbitrsrily closely by such linear combinations, in the
sense that for any positive nurmber ¢ there exists 8 wnear combination of these sysiems )
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whose output never differs {from the output of the given system by more than ¢. It follows
immedustely that the mean-square error can thus be made lcis than . The method of
orthogonal expansions will yield spproximauons with mean-square error that is as small
as can be obtained, 8o that, by using & svfflicienily large number of systems, the mean-
square error can be made arbitrarily emall. ’

This does not imply that the miethod of orthogonal expansion can be made to yield
appromumations with uniformly small error. However, it is esmly seen that the probs-
buity of an error of magnitude greater thar any aumber A cannot exceed (t/A)z if the
mean-sq'ar: error is (z or smaller, so that we have {for the engemble with respect to
which the expansion was made) an almost un.formly amall error in s statistical sende.

An *xpuacivn made with respect to one input ensemble will have small error, although
not minumum error, when some other input ensembles are used, Consider two ensembles
of inputs, E, and E,, consis!!ng of the sarae set of Inputs with different probability dis-
tributions. Suppose ihat the systems H has been approximated by means of an orthogonal
expansion with respect to El‘ s0 thet {{f we attach the ensemble degignation to the inte.
gral sign) we have

f < (116)
E,

If the probability of any subset in ensemble E, is never greater than M times the proba-

bulity of the same subset in E,, then obviously

fs"< Ms BN ITE))
E, '

Then by making the mean-square error that is measured with El sufficienly small, we
can make the mean-square error that is measured with Ez as small as m&y be re.red.
Thus a small mean-square error i1 one ensemble implies a small mean-sJuare error
in another ensemble, Furthermore, even under the looser condition that every set math
gero probabulity in El must have zerc probability in Ez, we can ¢conclude that with input
ensemble Ez there must be small probability of large error, even though no t~und on the
mean~. quare 'rror can be set. There is reason to believe that, if the system that {s to
be approximated is continuous, even this condition car. be relaced, and that there may
be orthogonal! methods of deriving approxumations with uniformiy small error, (it is
known what such methods exiat {or the approximation of real functions.)

Some of the preceding discussion is applicadle to the expansion, in orthogonal sys-
tems, of systems that are not ccatinuous (for exaraple, hysteretic systems). In this
cas®, i the nonlinear systems q‘ are¢ continuous (as they will be if they are products of

' linear systems with Laguerre-function impulse responses), an approximation with
) untformiy small error cannot be obtained. However, it may be possible 1o obiain
» 9
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approximations wa:¢h small mean-square error, perhaps even arbitrarily small, At axy
rate, the smaidest mean-square er~or that is poassible with a continuous approximation
can be approached.

5.3 FILTERING AND PREDICTION

The same mewsd can also be used in nunimum-mean-square-error filtering and
prediction problems, if the joint ensemble of input and desired output can be produced
in the laboratory. We proceed precisely as though the desired output had been obtained
a8 the output of a system 10 which the input was applied, The results of the preceding
section then imply waat, with any bank of nonlinear futers Q‘ that {s adequate to approxi=
ate a continuous exystiem 'vith arbiirsrily small mean<square error, we can come arbi.
trarLy close 1o any port Inanc¢ that can be achieveg with a continucus (llter,

Nots that there may be '~ some probiems, no optimum continuous filter, {f the opti.

mum fiter is m Avws, (A heuristuc il radon s (cund In the thwory of real
functions: the- ‘e R S U T O Y
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